PUHY-P200-250YREM-A

CONTENTS

1. Specifications	3
2. Capacity Tables	5
2-1 Correction by temperature	5
2-2 Correction by total indoor	
2-3 Correction by refrigerant piping length	
2-4 Correction at frosting and defrosting	
	9
3. Sound Levels	10
	11
4. External Dimensions	
5. Electrical Wiring Diagram	12
6. Refrigerant Circuit Diagram	13
And Thermal Sensor	
7 Dreparations for Installing Definement Diving	
7. Preparations for Installing Refrigerant Piping	14
7-1 Evaluating the Adaptability of the Existing Piping	14
7-2 Pipe Length Specifications 7-3 Selecting Refrigerant Piping	16 17
7-4 Connecting Refrigerant Pipes with	17
Different Diameters ······	18
7-5 Calculating the Amount of Additional	
Refrigerant to Charge	22
7-6 Important Notes on Refrigerant Piping	
Connecting Valves	23

Cautions For REPLACE MULTI Installation Work

	Flow of installation work in the field	Items to be observed
	Confirming the possibility of existing refrigerant piping for reuse	• Please note that our Corporation is not liable to the reliability of existing piping, wiring and power system for reuse (in relation with the gas leak of piping, partially defective/disconnection of wiring, deteriorated insulation, characteristic faults due to worn out system).
	Confirming the possibility of existing control wiring for reuse	 For limitation on the refrigerant piping and applicable piping diameter, check the existing piping for reuse in accordance with the specified check sheet by refer- ring to product catalogs and this manuals for judgement to reuse.
n work	Confirming the possibility of existing power source system for reuse	 If vapor condensation was found in the past, check the thermal insulation. Any portion suffering condensation dripping, check the deterioration of the insulation, and repair the insulation materials if required.
Before local installation work	Confirming the objective range for replacing	 When the copper piping is seriously deteriorated, do not use parts with verdigris or black spots. For reusing the existing control wiring between the outdoor unit, and remote con-
re local ii		troller, check the wire type, size or the like, based on the check sheet to judge the possibility.Even when the above does not meet the item on the check sheet, existing wiring
Befo		may be reused depending on the number of connecting indoor units and piping length. Ask us for details.For the power source system, employ the voltage and number of phase meeting
		 the outdoor unit, indoor unit and adopt the breaker capacity and wiring size based on the power source wiring connection diagram. When the existing power source system (including the power source wiring) is used abade the system for datasiantian and damages.
+	Recovering the refrigerant of old system	 used, check the system for deterioration and damages. Check the refrigerating machine oil used in the existing system. (As is found at the oil inspection), if the refrigerating machine oil used in the existing system is mineral oil, use the ester oil sampling kit for inspection.
		 When the length of piping for reuse is unknown, additional refrigerant charge is to be calculated based on the quantity of recovered refrigerant. For this reason, you are kindly requested to recover all refrigerant inside the existing outdoor/
	Removing the outdoor/indoor units, re- mote controllers, etc.	indoor units and extended piping to check and record the quantity. (The stan- dard of additional refrigerant is (Quantity of R22 recovered - Charged quantity of existing outdoor unit + 3kg). Adjust the refrigerant quantity after mineral oil re-
		covery operation.)
installation work	Installing the outdoor/indoor units, remote controllers, etc., and executing electrical work	 Outdoor unit Confirm the space around the outdoor unit. (Verifying the installation space of the oil trap kit)
tallatic		
During local ins	Setting the address, checking the system	 Turn the power source on, and confirm the normality of the system Check the remote controller or outdoor unit for error display. Run the indoor unit for fan operation after turning the remote controller on, and check the air feeding and direction.
Dur		Do not run the compressor until finishing the mineral oil recovery operation.
	Executing the piping work (mounting of ball valve).	 Mount the valves to the field piping (extended piping). (The ball valve is attached to the outdoor unit.) Execute an airtight test to check the existing piping for deterioration or leaking.
	Air tightening and evacuating the existing piping and charging refrigerant	 Calculate the quantity required by the extended piping, and charge the additional refrigerant. Make sure to enter the value in the additional refrigerant charge column on the label of the outdoor unit.
		■ If the refrigerant charge is insufficient, enter the value also.
		Without applying any operation, keep the ball valves of the outdoor unit closed before mineral oil recovery operation.
ŧ	Enter required items in the request form of	REPLACE MULTI mineral oil recovery work.
	$\overline{\nabla}$	
 	Operating mineral oil recovery	
i ↓ ↓	Executing test run and adjustment (for final verfication of operation).	It is necessary to charge refrigerant in a rated quantity and adjust the quantity. Be sure to execute when the piping length is unknown. For detail, consult the agent of your dealer.

Caution to Equipment Used for Replacing

A Caution

Do not operate any valves before conducting mineral oil recovery operation.

Operating valves before conducting mineral oil recovery operation may cause a deterioration in the performance of mineral oil recovery.

For mineral oil recovery operation, the system controller and MA remote controller may be required to be remove sometimes.

- Improper handling can lead to an inability to perform oil recovery operation.
- For removal, follow the instruction displayed on the PC for mineral oil recovery.
- Mount the controllers again after finishing the oil recovery operation.

Observe a safe distance from the indoor unit fan which runs during the mineral oil recovery operation.

Working in the surrounding of the indoor unit fan can cause personal injury.

Record the quantity of refrigerant replenished. (Enter into the column for replenished refrigerant quantity on the label of the indoor unit.)

- Missing the description may deteriorate the performance of mineral oil recovery.
- Malfunction or poor cooling/heating may also be caused.

During the mineral oil recovery operation, an error display may be shown on the remote controller or system controller.

• When an error display was shown during mineral oil recovery operation, reset the error display after finishing the operation.

To conduct the refrigerant recovery/evacuation of the inside of exiting piping, choose tools only used with R407C e.g. charging hose.

• Using a charging hose for R407C causes it to mix the conventional refrigerating machine oil leading to the deterioration of refrigerating machine oil.

Before Conducting Installation Work/Electrical Work

Do not use the same switch or the like for Check possibility for the reuse of existing refrigerant piping by observing this manual. plural outdoor units. Otherwise, malfunction, heat generation or fire may • The conventional refrigerating machine oil is conbe caused tained inside existing piping and some residual oil deteriorates oil recovery performance which may Be sure to mount the valve to the field piping lead to the deterioration of refrigerating machine oil. • The piping specification (diameter, length , height (extended piping). difference) out of the use specified range may hinder After mineral oil recovery, the oil trap kit can not be the mineral oil recovery performance, possibly leadremoved disabling air conditioning operation. ing to deterioration of refrigerating machine oil. Provide thermal insulation to the valve on the When using existing wiring (for power source field piping (extended piping) properly. or transmission) or switches, check them for • Insufficient thermal insulation generates condensadisconnection and deterioration beforehand. tion that may cause to deteriorate the performance. • Otherwise an electric leak, heat generation or fire • Provide thermal insulation (including lagging) after may be caused. recovering mineral oil.

Before Conducting Mineral Oil Recovery Operation

▲ Caution

Do not run the outdoor unit during a test run until finishing the mineral oil recovery operation.

• The indoor unit fan will run.

1. Specifications

Model name			PUHY-P20	DOYREM-A	
Model name			Cooling	Heating	
a ii	*1	kW	22.4	25.0	
Capacity	*2	kcal/h	20,000	_	
Power source			3N ~ 380/400/	/415V 50/60Hz	
Power input kW			6.32	6.80	
Current A			10.6/10.1/9.7	11.4/10.9/10.5	
Туре	e X Quantity		Propeller	fan X 1	
Fan Airfle	ow rate	m³/min	20	0	
Moto	or output	kW	0.3	8	
Туре	e		Herm	etic	
Compressor Moto	or output	kW	5.3	3	
Crar	nkcase heater	kW	0.045(240V)		
Refrigerant / Lubricant			R407C/MEL32		
External finish			Pre-coated galvanized sheets (Powder coating) <munsell 1="" 5y8="" or="" similar=""></munsell>		
External dimension		mm	1755(H)×990(W)×840(L)		
High	pressure protection	1	2.94	ИРа	
Protection	pressor		Over current protection		
devices Fan			Thermal	switch	
Inve	rter		Over current protection, thermal protection		
Refrigerant piping diam	eter	Liquid / Gas	ø 12.7 (Flare) /	ø 25.4 (Brazed)	
	I capacity		50 ~ 130% of outd	loor unit capacity	
Indoor unit Mod	el / Quantity		Model 20 ~ 2	250 / 1 ~ 13	
Noise level	*	dB <a>	56	3	
Net weight kg			239		
Operating temperature range			Indoor:15°CWB ~ 24°CWB Outdoor:-5°CDB ~ 43°CDB (0°CDB ~ 43°CDB with outdoor unit at lower position)	Indoor:15°CDB ~ 27°CDB Outdoor:-15°CWB ~ 15.5°CWB	
Matters Deserving Spec	cial Mention		A pipe of ø28.58 can be	e used for the gas pipe	

Note: 1.Cooling/heating capacity indicates the maximum value at operation under the following condition.

*1 Cooling Indoor : 27°CDB/19°CWB Outdoor : 35°CDB Heating Indoor : 20°CDB Outdoor : 7°CDB/6°CWB Pipe length : 7.5m Height difference : 0m *2 Cooling Indoor : 27°CDB/19.5°CWB Outdoor : 35°CDB Pipe length : 5m Height difference : 0m

* It is measured in anechoic room.

Madal name			PUHY-P2	50YREM-A		
Model name			Cooling	Heating		
0 1	*1	kW	28.0	31.5		
Capacity *2		kcal/h	25,000	-		
Power source			3N ~ 380/400/4	15V 50/60Hz		
Power input kW			8.54	8.95		
Current A			14.4/13.6/13.2	15.1/14.3/13.8		
	Type X Quantity		Propelle	er fan X 1		
Fan	Airflow rate	m³/min	2	00		
	Motor output	kW	0	.38		
	Туре		Heri	metic		
Compressor	Motor output	kW	6.8			
	Crankcase heater	kW	0.045(240V)			
Refrigerant / Lub	ricant		R407C/MEL32			
External finish			Pre-coated galvanized sheets <munsell 1="" 5y8="" or="" similar=""></munsell>			
External dimension	on	mm	1755(H)×990(W)×840(L)			
	High pressure protection	I	2.94	IMPa		
Protection	Compressor		Over current protection			
devices	Fan		Thermal switch			
	Inverter		Over current protection, thermal protection			
Refrigerant piping	g diameter	Liquid / Gas	ø 12.7 (Flare) / ø	ø 28.58 (Brazed)		
	Total capacity		50 ~ 130% of out	tdoor unit capacity		
Indoor unit	Model / Quantity		Model 20 ~	250 / 1 ~ 16		
Noise level	*	dB <a>	57			
Net weight kg			239			
Operating temperature range			Indoor:15°CWB ~ 24°CWB Outdoor:-5°CDB ~ 43°CDB (0°CDB ~ 43°CDB with outdoor unit at lower position)	Indoor:15°CDB ~ 27°CDB Outdoor:-15°CWB~15.5°CWB		

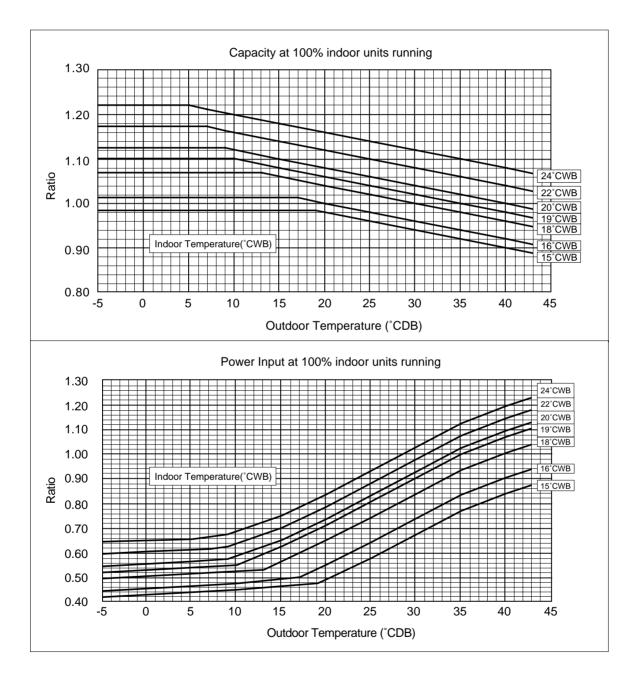
Note: 1.Cooling/heating capacity indicates the maximum value at operation under the following condition.

*1 **Cooling** Indoor : 27°CDB/19°CWB Outdoor : 35°CDB Heating Indoor : 20°CDB

Outdoor : 7°CDB/6°CWB Pipe length : 7.5m Height difference : 0m

*2 Cooling Indoor : 27°CDB/19.5°CWB Outdoor : 35°CDB Pipe length : 5m Height difference : 0m

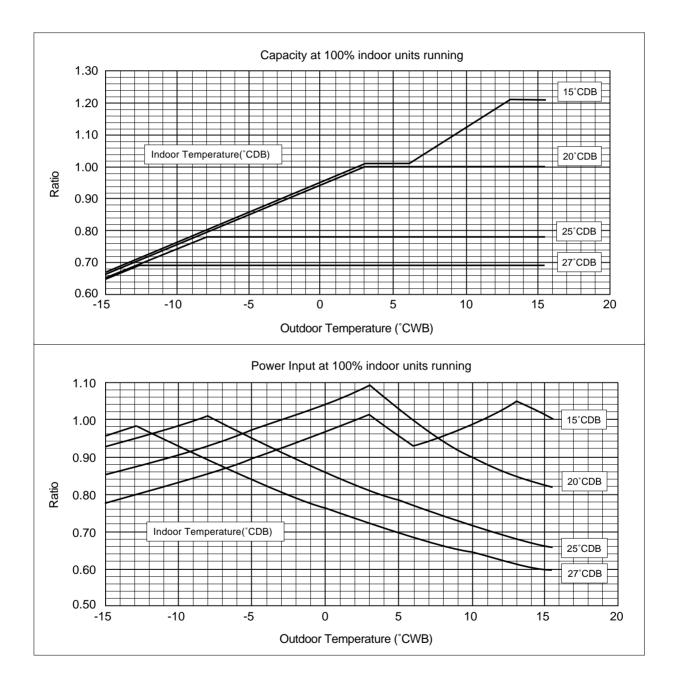
* It is measured in anechoic room.

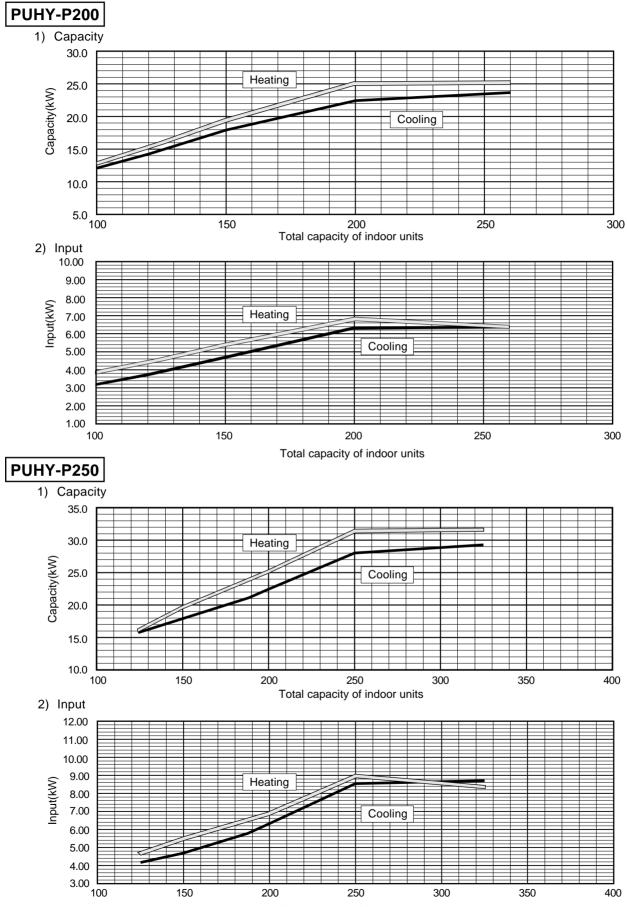

2. Capacity Tables

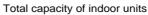
2-1. Correction by temperature

Cooling

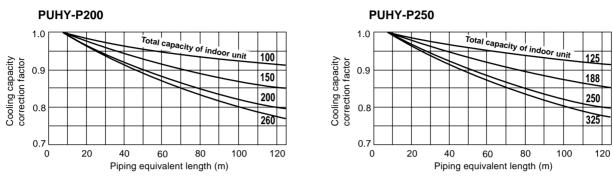
Standard Specifications

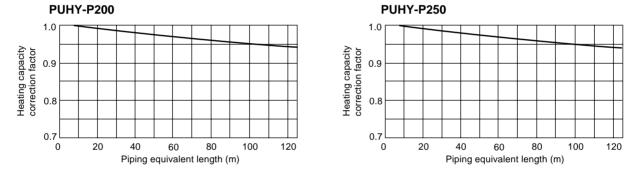

		PUHY-P200	PUHY-P250
Capacity	kW	22.4	28.0
Input	kW	6.32	8.54


Heating


• Standard Specifications (Outdoor 7°CDB/6°CWB Indoor 20°CDB/-)

		PUHY-P200	PUHY-P250
Capacity	kW	25.0	31.5
Input	kW	6.80	8.95


2-2. Correction by total indoor


2-3. Correction by refrigerant piping length

To obtain a decrease in cooling/heating capacity due to refrigerant piping extension, multiply by the capacity correction factor based on the refrigerant piping equivalent length in the table below.

Cooling capacity correction

• Heating capacity correction

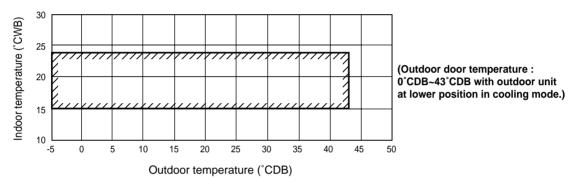
• How to obtain piping equivalent length

① PUHY-P200

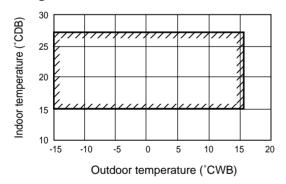
Equivalent length = (Actual piping length to the farthest indoor unit) + (0.47 \times number of bent on the piping)m ② PUHY-P250

Equivalent length = (Actual piping length to the farthest indoor unit) + (0.50 × number of bent on the piping)m

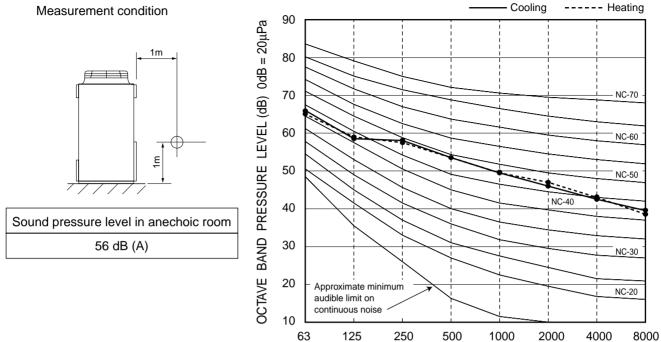
2-4. Correction at frosting and defrosting


When a decrease in heating capacity due to frosted and defrosting operations is considered, the value multiplied by the correction factor in the table below represents the heating capacity.

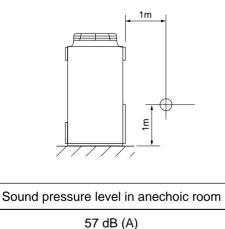
Correction	factor	table

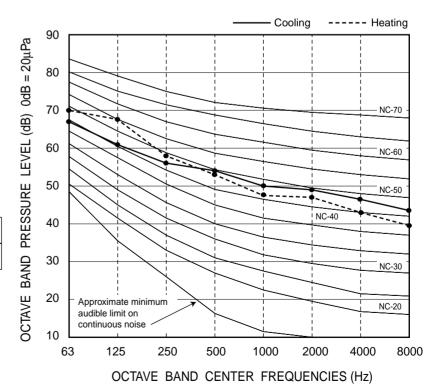

Outdoor (°CWB)	inlet air temp	6	4	2	0	-2	-4	-6	-8	-10
Correction factor	PUHY-P200-250	1.0	0.95	0.84	0.83	0.87	0.9	0.95	0.95	0.95

2-5. Operation limit

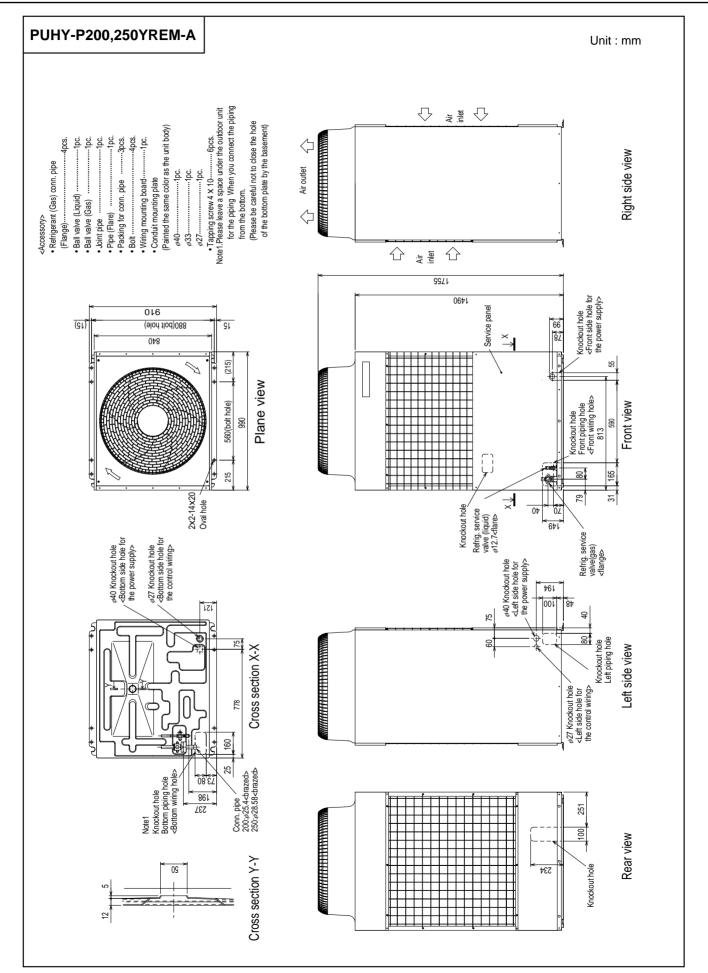


• Heating


3. Sound Levels

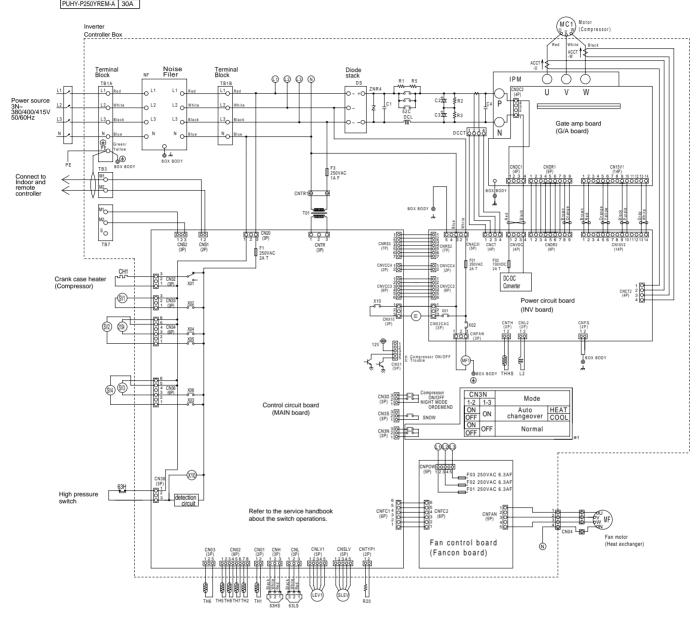

PUHY-P200

PUHY-P250


Measurement condition

OCTAVE BAND CENTER FREQUENCIES (Hz)

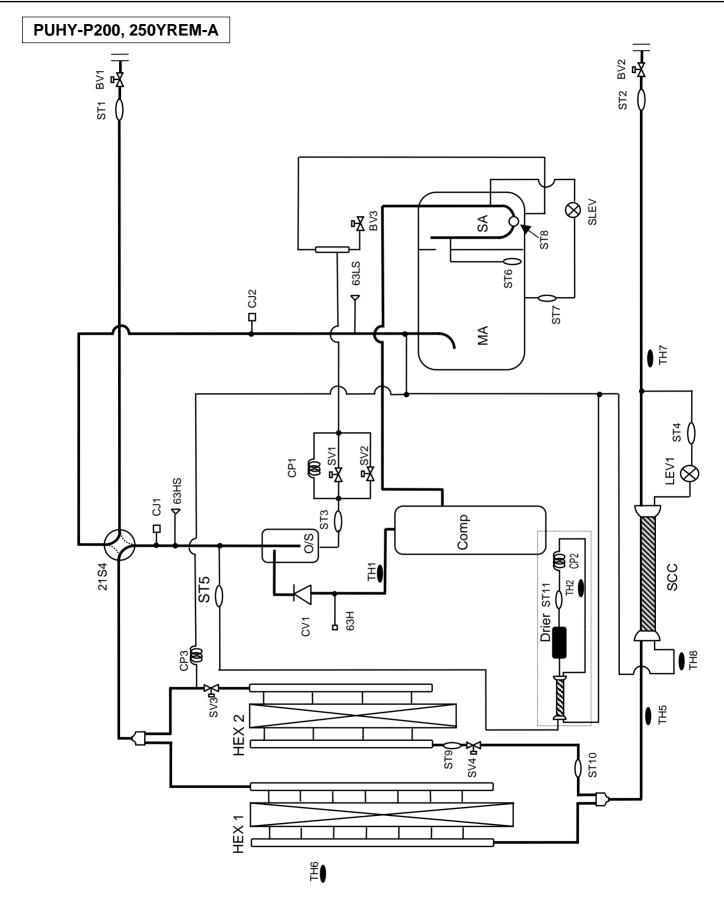
4. External Dimensions



5. Electrical Wiring Diagram

PUHY-P200, 250YREM-A

<ELECTRICAL WIRING DIAGRAM>



<SYMBOL EXPLANATION>

Symbol	Name	Symbol	Name	Symbol	Symbol N a m e		Symbol N a m e		Name	
DCL	DC reactor (Power factor improvement)	SV/2	SV3 Solenoid valve (Heat exchanger capacity control)		High pressure sensor		TH7	Thermistor	liquid outlet temp. detect	
DCCT	Current Sensor	3V3			Low pressure sensor		1117		at Sub-cool coil	
ACCT-U,W	Current Sensor	SV4	Solenoid valve	L2	Choke coil (Transmission)		TH8		bypass outlet temp. detect	
ZNR4	Varistor	314	4 (Heat exchanger capacity control)		Intelligent power module		1110		at Sub-cool coil	
52C	Magnetic contactor (Inverter main circuit)	LEV1	Electric expansion valve	TH1	Thermistor	Discharge pipe temp. detect	THHS	Radiator p	panel temp. detect	
MF1	Fan motor (Radiator panel)	LEVI	(Sub-cool coil bypass)	TH2		Saturation evapo. temp. detect	X1~10	Aux. rela	у	
21S4 *1	4-way valve		Electric expansion valve	TH5		Pipe temp. detect	÷	Earth ten	minal	
SV1, SV2	Solenoid valve (Discharge-suction bypass)	SLEV	(Sub-cool coil bypass)	TH6		OA temp. detect	۲	Laturten	iiiiiai	

6. Refrigerant Circuit Diagram And Thermal Sensor

7. Preparations for Installing Refrigerant Piping

7-1. Evaluating the Adaptability of the Existing Piping

Both the checking of gas leak inside existing piping and the verification of reliability relating to piping strength belong to the scope of field work as same as in the past. Therefore, we are not liable to the quality of existing piping.

Before starting the work, it is necessary to confirm that the existing piping in question owns the rated strength (relating to the material, thickness, and corroded portions, if any).

Points to be observed for simplified judgment to reuse existing piping

1. Reusing of CITY MULTI air conditioner system

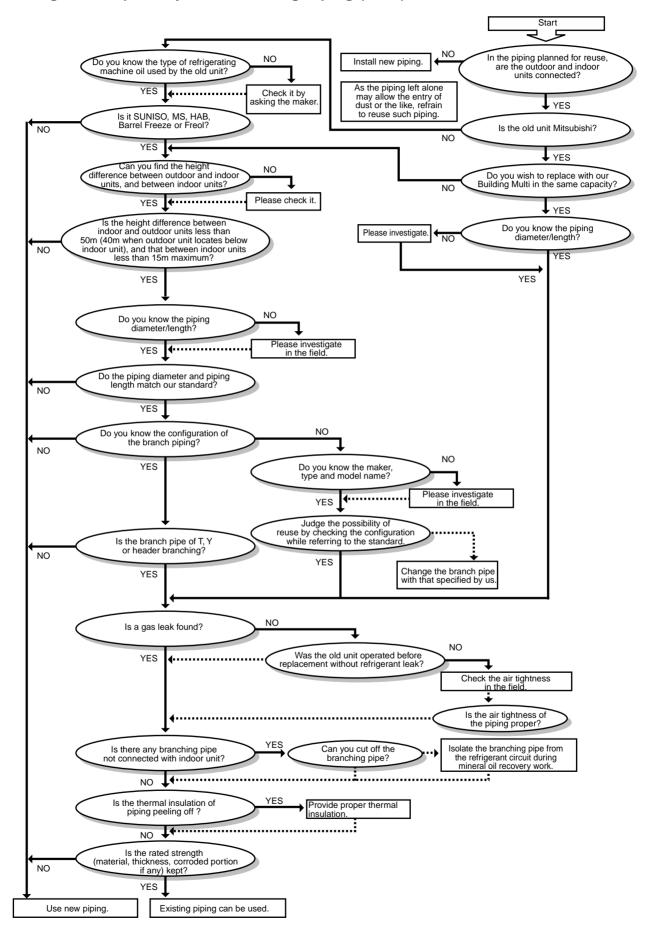
The existing piping can basically be reused if no problem was found during your use in the past.

(Please check whether the trouble was caused by gas leak or it required frequent refrigerant replenishment.)

- (1) Change to same capacity \rightarrow Usable as it is
- (2) Change to different capacity \rightarrow Check whether the piping diameter, piping length, height difference, etc. are within our operating range.

2. Reusing other makes or Mitsubishi other than CITY MULTI

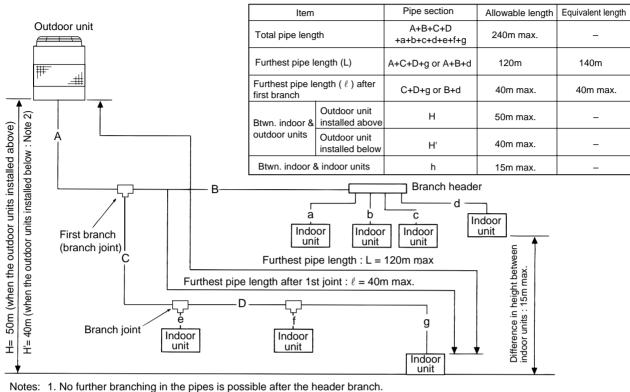
- Check whether the packaged air conditioner used in the past was in operational trouble or not. (Please check whether the trouble was caused by gas leak or it required frequent refrigerant replenishment.)
- (2) Confirm the type of refrigerating machine oil used by the existing facility. SUNISO, MS, HAB, Barrel Freeze, Freol are acceptable. For other refrigerating machine oil than the above, ask our factory in each case.
- (3) The branch types of T-fitting, Y-branch and header branching are acceptable. The branch pipe applied with pressure loss (like the multi-distributor of SLIM) can not be used. Replacement with new branch pipe is required in this case. Estimate the branch configuration and piping size depending on the maker name, model name and con-


necting quantity of existing products.

(4) Confirm that the piping diameter, piping length, height difference, etc. are within our operating range.

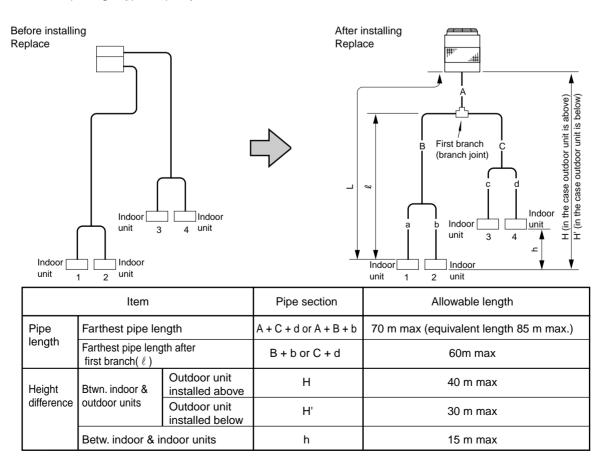
Item, index of judgment fo	r reusing of existing piping
----------------------------	------------------------------

Items	Judgment standard	Indirect material for judgment
Piping diameter, length	Refer to Items 7-2 ~ 4	None
Type of refrigerating machine oil	SUNISO, MS, HAB, Barrel Freeze, Freol	Maker, type (model name), year of manufacturing
Air tightness	No pressure drop by leaving for one day after pressurizing to 2.98Mpa	Operability of previous unit
Distributor configuration	T-fitting, Y-fitting, Header branching	Maker, type (model name), year of manufacturing
Thermal insulation	No peeling off of thermal insulation and caulking	None
Piping system	Unit height difference should be within the standard of typical unit	None
Pipe thickness	Pipe thickness equivalent to the standard of each country	


Evaluating the Adaptability of the Existing Piping (Flow)

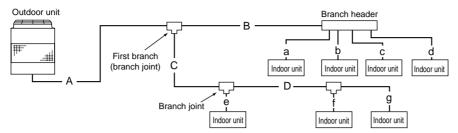
7-2. Pipe Length Specification

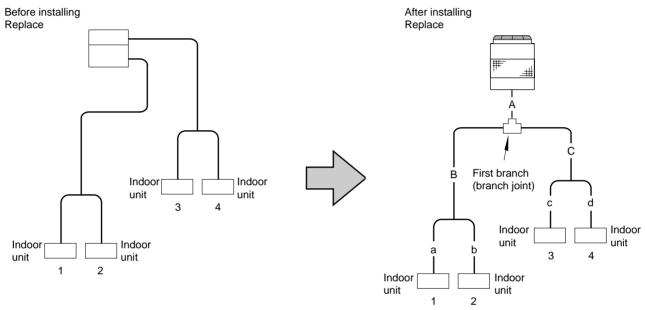
PUHY-P200-250


(1) In the case of replacing units using branch-pipe method

When cooling operation is performed when the outdoor temp. is 0°C or lower : H'= 4m or less.

3. Equivalent pipe length (m) : Actual pipe length + model 200 : 0.47 × number of bent.


(2) In the case of replacing a typical split system


7-3. Selecting Refrigerant Piping

PUHY-P200-250

(1) In the case of replacing units using branch-pipe method

(2) In the case of replacing a typical split system

Note : • No further branching is possible after the header branch.

- Arrange the total capacity of the indoor units less than 330, connected on the downstream side by the header branch. It over that, branch pipes on the upstream side using the branch joint.
- Model 200 and 250 can not be connected with header branch.

(1) Outdoor unit - 1st branch (Pipe A)

Outdoor unit model	Liquid pipe	Gas pipe
PUHY-P200	ø 12.7 X 0.8t	^{*1} ∅ 25.4 X 1.3t
PUHY-P250	ø 12.7 X 0.8t	ø 28.58 X 1.45t

*1 The pipe of 28.58mm can be used for the gas pipe of PUHY-P200.

(3) Branch - Branch (Pipe B,C,D)

Total capacity of indoor units	Liquid pipe	Gas pipe				
~ 80	ø 9.52 × 0.8t	ø 15.88 X 1.0t				
81 ~ 160	ø 12.7 X 0.8t	ø 19.05 X 1.0t				
161 ~	ø 12.7 X 0.8t	** ø 25.4 X 1.3t				

** The pipe of 28.58mm can be used for the gas pipe of PUHY-P200. * The thickness of pipe is Japanese Standard.

Please choose the thickness according to your country standard referring to above chart.

(2) Branch joint / Header

Type of branch pipe	Total capacity of indoor units	Branch pipe model		
Joint	~ 160	CMY-Y102S-F		
Joint	161 ~ 330	CMY-Y102L-F		
	For 4 branches	CMY-Y104-F		
Header	For 7 branches	CMY-Y107-F		
	For 10 branches	CMY-Y1010-F		

(4) Branch - Indoor unit (Pipe a, b, c, d, e, f, g)

Indoor unit model	Liquid pipe	Gas pipe
20,25,32,40	ø 6.35 X 0.8t	ø 12.7 X 0.8t
50,63,71,80	ø 9.52 X 0.8t	ø 15.88 X 1.0t
100,125,140	ø 9.52 X 0.8t	ø 19.05 X 1.0t
200	ø 12.7 X 0.8t	ø 25.4 X 1.3t
250	ø 12.7 X 0.8t	ø 28.58 X 1.3t

Indoor unit capacities

The capacity of an indoor unit is the same as the number used for its type identification.

Examples:

PEFY-P63VM → Capacity = 63

7-4. Connecting Refrigerant Pipes with Different Diameters

(1) List of possibility to connect deformed piping (Chart)

① Outdoor–First branch [section A]

Table-1

		P200	P250
Gas pipe	ø 15.88	X	X
	ø 19.05	X	X
	ø 22.2	•	X
	ø 25.4	O	
	ø 28.58	*	0
	ø 31.75	×	X
	ø 38.1	×	X
Liquid pipe	ø 9.52	X	X
	ø 12.7	O	O
	ø 15.88	Δ	Δ
	ø 19.05	×	×
	ø 22.2	×	×

◎ : Normal piping

- : Usable (without performance deterioration)
- : Usable (without performance deterioration: Refer to DATABOOK)
- \triangle : Usable (with rule on refrigerant charge: Refer to the formula to judge refrigerant charge on the next page)
- ▲ : Usable (with limitation on piping length)
- X : Not connectable
- * : Limitation on mineral oil recovery work process

② Branch-indoor [a~f sections]

Table-2 List of possibility to connect indoor unit/deformed piping

		P20	P25	P32	P40	P50	P63	P71	P80	P100	P125	P140	P200	P250
Gas pipe	ø 12.7	O	0	O	0	•	•	x	x	×	×	x	×	×
	ø 15.88	×	×	×	•	O	O	O	O	•	•	•	x	×
	ø 19.05	×	×	×	×	X	0	0	0	O	O	O	x	×
	ø 22.2	×	×	×	×	X	X	×	*	*	*	0	•	×
	ø 25.4	×	×	×	×	X	×	х	X	×	*	*	O	
	ø 28.58	×	×	×	×	X	X	X	X	×	X	X	0	0
	ø 31.75	×	×	×	×	X	×	х	X	×	X	×	X	×
	ø 38.1	×	×	×	×	×	×	×	×	×	×	×	×	×
Liquid pipe	ø 6.35	O	O	O	0	(within 25m)	(within 15m)	x	x	×	x	×	х	×
	ø 9.52	Δ	Δ	\triangle		O	O	O	0	O	O	O	X	×
	ø 12.7	\triangle	Δ	\triangle		\triangle		\triangle	Δ	Δ	Δ	Δ	O	0
	ø 15.88	\triangle		\triangle				\triangle	Δ	Δ	Δ	Δ	Δ	Δ
	ø 19.05	×	×	×	×	X	X	×	X	×	X	×	×	X

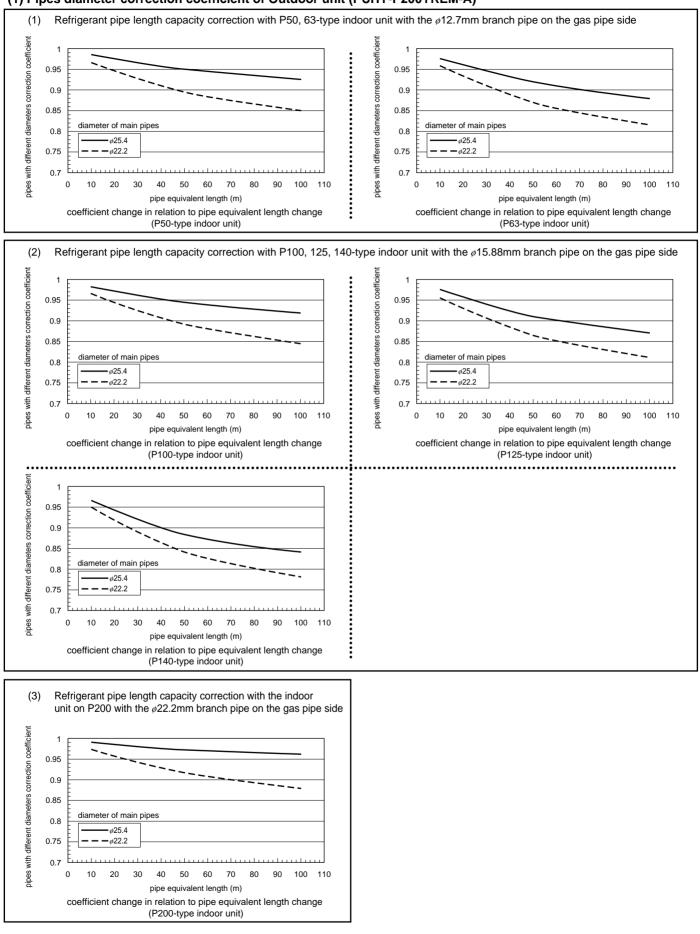
Formula to judge refrigerant charge:

For the case marked \triangle , it is necessary to take measures to reduce the piping length slightly, to raise the indoor model size or reduce the number of connected indoor units.

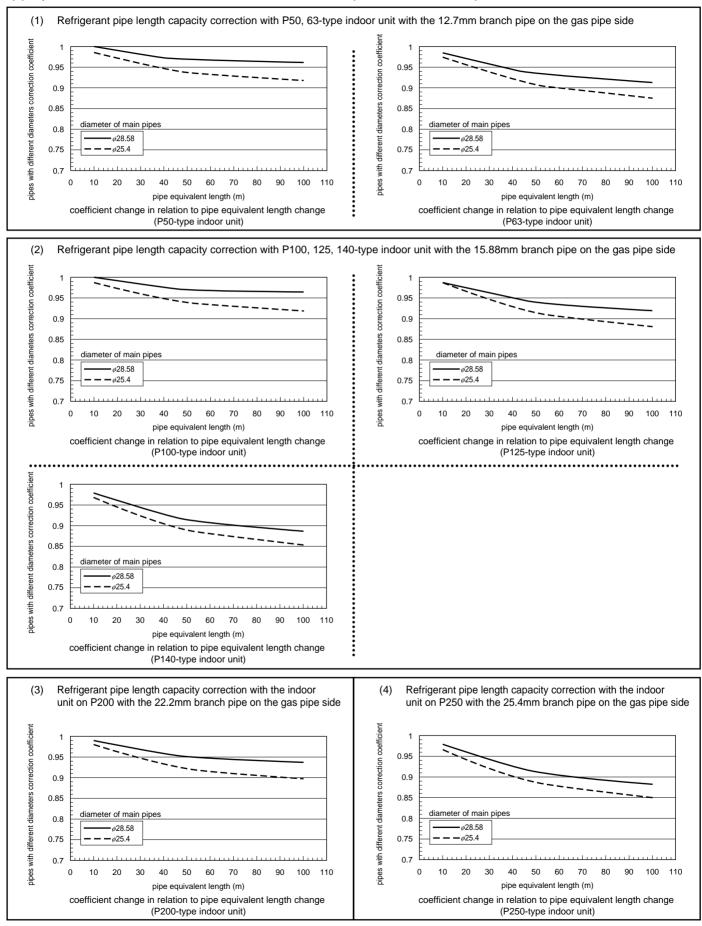
M = 0.3 x L1 + 0.2 x L2 + 0.12 x L3 + 0.06 x L4 + 0.024 x L5 < 17.4

- L1 : Piping length (m) of \$\u03c6\$ 19.05mm
 L4 : Piping length (m) of \$\u03c6\$ 9.52mm

 L2 : Piping length (m) of \$\u03c6\$ 15.88mm
 L5 : Piping length (m) of \$\u03c6\$ 6.35mm
- L3 : Piping length (m) of ϕ 12.7mm
- (2) Cooling or heating capacity when connecting the indoor unit using pipes with different diameters


Capacity correction with one-size smaller gas pipes.

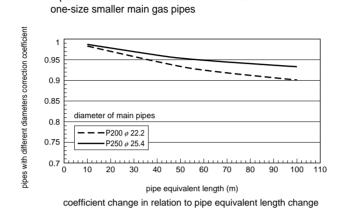
Refer to "I", when using pipes (gas pipe) that are one-size smaller only for branch pipes or branch pipes as well as main pipes. Refer to "II", when using pipes (gas pipe) thet are one-size smaller only for the main pipes.


I Capacity correction with one-size smaller branch pipes

With the indoor unit (P50, 63, 100, 125, 140, 200, 250), the capacity will reduce using one size smaller branch pipes. (Refrigerant pipe length capacity correction on the list of connecting pipes with different diameters is shown with • marks.)

(1) Pipes diameter correction coefficient of Outdoor unit (PUHY-P200YREM-A)

(2) Pipes diameter correction coefficient of Outdoor unit (PUHY-P250YREM-A)



${\rm I\hspace{-0.5mm}I}$. Capacity correction using one-size smaller main pipes

With the outdoor units (P200, 250), capacity will deteriorate using one-size smaller main pipes. (with regular branch pipes)

Therefore, it might be necessary to correct system standard capacity using "pipes with different diameters correction coefficient" except for the units listed below. (P50, 63, 100, 125, 140, 200, 250 with regular gas pipes)

Pipes with different diameters correction coefficient with

7-5. Calculating the Amount of Additional Refrigerant to Charge

(1) Refrigerant charge

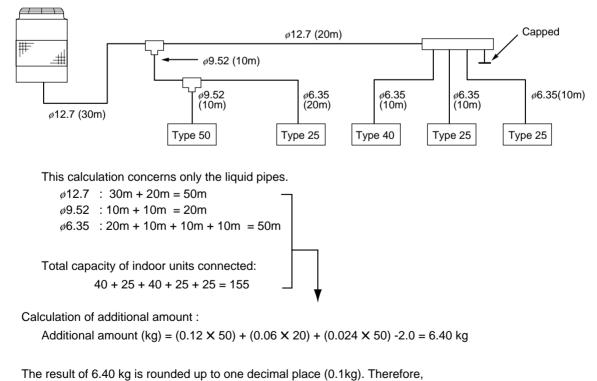
The following amount of refrigerant is being charged into the outdoor unit at factory shipment. As the amount does not include that for extended piping, charge it additionally in the filed.

Outdoor unit	PUHY-P200	PUHY-P250
Refrigerant charge	13.0kg	13.0kg

(2) Formula to obtain an amount of additional refrigerant charge

The additional amount of refrigerant to be added is calculated from the size of the extended liquid pipes and their length (in meters).

Additional amount (kg) = (0.25 × L1) + (0.12 × L2) + (0.06 × L3) + (0.024 × L4) - A


- L₂: Length of ϕ 12.7 liquid pipe (m)
- L3: Length of ø9.52 liquid pipe (m)
- L4: Length of ø6.35 liquid pipe (m)

A: Additional refrigerant charge by total capacity of indoor units connected.

Type of Outdoor unit	Additional refrigerant charge (A)		
P200, P250	2.0		

*1 : Any fractions below 0.01kg in the result of the calculation should be round up. (Examples : $10.52 \rightarrow 10.6$ kg)

Example: PUHY-P200

Additional amount = 6.4 kg

* When the result of calculation of additional filling amount is rounded up under 0.5 kg, additional refrigerant amount is 0.5 kg.

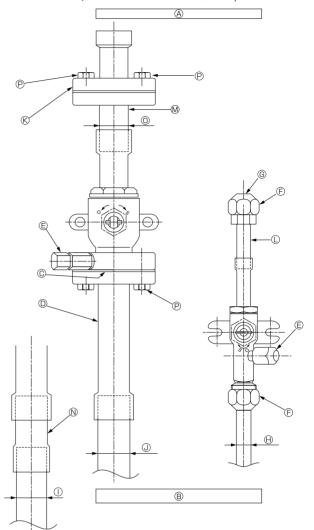
7-6. Important Notes on Refrigerant Piping Connecting Valves

(1) Before mineral oil recovery

- Conduct piping connection and valve operation accurately.
- The liquid-side connection pipe 3 is supplied with the outdoor unit. 1) Braze the ball valve on the liquid side.
- (2) Fit the cap and flare nut to isolate the refrigerant circuit.
- The gas-side connecting pipes 1,2,4 are supplied with the outdoor unit. Connecting to the indoor unit side
- (1) For brazing to the connecting pipe with flange, remove the connecting pipe with flange from the ball valve, and braze it.
- ② If the pipe diameter of the existing onsite piping is ø25.4mm, make a brazed connection using connecting pipe 2.
- ③ At the mounting of the hollow packing, wipe off dust attached on the flange sheet surface and the packing. Coat refrigerating machine oil (Ester oil, ether oil or alkyl benzene [small amount] onto both surfaces of the packing.)

Connecting to the oil trap kit side

- (1) Braze the ball valve on the gas side. Insert the packing, consisting of rubber bushing with membrane,
- and fit the connecting pipe with flange to isolate the refrigerant circuit. When the valve is open, it obstructs the mineral oil recovery operation so this valve must be in the closed position.
- Determine the amount of additional refrigerant charge by using the formula, and charge refrigerant additionally through the service port after completing piping connection work.


•Refer to "(2) After mineral oil recovery" for the required tightening torque. ·Conduct piping connection and valve operation accurately.

•The gas side connecting pipe is assembled in factory before shipment.

- (1) For brazing to the connecting pipe with flange, remove the connecting pipe with flange from the ball valve, and braze it outside of the unit.
- ② During the time when removing the connecting pipe with flange, remove the seal attached on the rear side of this sheet and paste it onto the flange surface of the ball valve to prevent the entry of dust into the valve.
- ③ The refrigerant circuit is closed with a round, close-packed packing upon shipment to prevent gas leak between flanges. As no operation can be done under this state, be sure to replace the packing with the hollow packing attached at the piping connection.
- ④ At the mounting of the hollow packing, wipe off dust attached on the flange sheet surface and the packing. Coat refrigerating machine oil (Ester oil, ether oil or alkylbenzene [small amount]) onto both surfaces of the packing.

<A> [Ball valve (gas side)] (This figure shows the valve in the close state.)

 [Ball valve (liquid side)] (This figure shows the valve in the close state)

- (A) :To oil trap kit
- B :To indoor unit
- © :Hollow Packing (Accessory)
- D:Connecting pipe 1 (Accessory)
- E :Service port
- (F) :Flare nut (Accessory)
- (G):Cap (Accessory)
- (H):ø12.7

- ① :ø25.4 (PUHY-P200) (J):#28.58 (PUHY-P250)
- (K): Close-packed packing (Accessory) (L):Connecting pipe 3 (Accessory)
- M:Connecting pipe 4 (Accessory)
- (N):Connecting pipe 2 (Accessory) ©:ø25.4
- (P):Bolt M10 (Accessory)

(2) After mineral oil recovery

- After evacuation and refrigerant charge, ensure that the handle is fully open. If operating with the valve closed, abnormal pressure will be imparted to the high- or low-pressure side of the refrigerant circuit, giving damage to the compressor, four-way valve, etc.
- Determine the amount of additional refrigerant charge by using the formula, and charge refrigerant additionally through the service port after completing piping connection work.
- After completing work, tighten the service port and cap securely not to generate gas leak.

<A> [Ball valve (gas side)] (This figure shows the valve in the fully open state.) [Ball valve (liquid side)]

A Valve stem

[Fully closed at the factory, when connecting the piping, when evacuating, and when charging additional refrigerant. Open fully after the operations above are completed.]

- B Stopper pin [Prevents the valve stem from turning 90° or more.]
- © Packing (Accessory) [Manufacturer: Nichiasu corporation] [Type: T/#1991-NF]
- D Connecting pipe (Accessory)
- [Use packing and securely install this pipe to the valve flange so that gas leakage will not occur. (Tightening torgue: 25 N·m) Coat both surf aces of the packing with refrigerating machine oil. (Ester oil, ether oil or alkylbenzene [small amount])]
- (E) Open (Operate slowly)

Cap, copper packing [Remove the cap and operate the valve stem Always reinstall the cap after operation is completed. (Valve stem cap tightening torque: 25 N·m or more)]

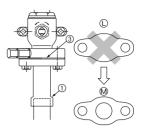
G Service port

[Use this port to evacuate the refrigerant piping and add an additional charge at the site. Open and close the port using a double-ended wrench.

Always reinstall the cap after operation is completed. (Service port cap tightening torque: 14 N m or more)]

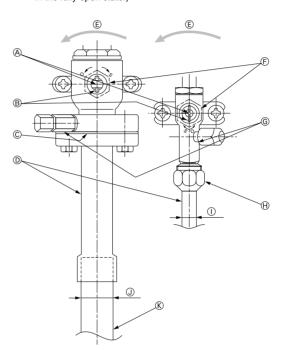
(H) Flare nut

[Tightening torque: 55 N·m Loosen and tighten this nut using a double-ended wrench. Coat the flare contact surface with refrigerating machine oil (Ester oil, ether oil or alkylbenzene [small amount])]


- ① ø 12.7
- (J) ø 25.4 (PUHY-P200)
- ø 28.58 (PUHY-P250)
- K Field piping

[Braze to the connecting pipe. (When brazing, use unoxidized brazing.)]

- Close-packed packing
- M Hollow packing


Caution:

Do not operate the valve before mineral oil collection running. Operating the valve before mineral oil collection running may cause deterioration of mineral oil collection capacity.

<A> [Ball valve (gas side)] (This figure shows the valve in the fully open state.)

 [Ball valve (liquid side)]

- (A): Valve stem
- B: Stopper pin
- ©: Packing (Accessory)
- D: Connecting pipe (Accessory)
- (E): Open (Operate slowly)
- (F): Cap, copper packing
- G: Service port
- (H): Flare nut
- ①: 12.7
- (J: ø 25.4 (PUHY-P200) ø 28.58 (PUHY-P250)
- (K): Field piping
- ①: Close-packed packing
- M: Hollow packing

HEAD OFFICE: MITSUBISHI DENKI BLDG., 2-2-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN