

TECHNICAL MANUAL

CONTENTS

CHAPTER 1	Ventilation	for Healthy	/ Living
-----------	-------------	-------------	----------

	1.	Necessity of Ventilation	2
	2.	Ventilation Standards	4
	3.	Ventilation Method	5
	4.	Ventilation Performance	8
	5.	Outdoor Air (ventilation) Load	10
СНАР	TE	R 2 Lossnay Construction and Principle	
	1.	Construction and Features of Lossnay	16
	2.	Construction and Principle of Core	16
	3.	Calculation of the Total Heat Recovery Efficiency	18
	4.	What is a Psychrometric Chart?	19
	5.	Calculation of Lossnay Heat Recovery	20
СНАР	TE	R 3 General Technical Considerations	
	1.	Lossnay Heat Recovery Effect	22
	2.	Example Heat Recovery Calculation	24
	3.	Calculation of Lossnay Economical Effects	26
	4.	Psychrometric Chart	28
	5.	The Result of No Bacerial Cross Contamination for the Lossnay Core and Determining Resistance of the Lossnay Core to Molds	29
	6.	Flame-proofing Properties of Lossnay Core	31
	7.	Lossnay Core's Soundproofing Properties Test	33
	8.	Change in Lossnay Core Over Time	34
	9.	Comparison of Heat Recovery Techniques	36
СНАР	TE	R 4 Characteristics	
	1.	How to Read the LGH Series Lossnay Characteristic Curves	40
	2.	Obtaining the Static Pressure Loss	40
	3.	How to Obtain Efficiency from Characteristic Curves	44
	4.	Sound	45
	5.	NC Curves (LGH-RX3 Series)	51
	6.	List of Models	55
СНАР	TE	R 5 System Design Recommendations	
	1.	Lossnay Usage Conditions	60
	2.	Noise Value of Lossnay with Built-in Fans	61
	3.	Attachment of Air Filter	61
	4.	Duct Construction	61
	5.	By-pass Ventilation	61
	6.	Transmission Rate of Various Gases and Related Maximum Workplace Concentration	62
	7.	Solubility of Odors and Toxic Gases, etc., in Water and Effect on Lossnay Core	63
	8.	Positioning of the Supply/Exhaust Fans and the Air Transmission Rate (excluding moisture resistant total heat recovery units)	64
	9.	Combined Operation with other Air Conditioners	65
	10.	Automatic Ventilation Switching	66
	4.4	Vertical Installation of I GH Series	67
	11.		

CHAPTER 6 Examples of Lossnay Applications

	1.	Large Office Building	70
	2.	Medium Size Office Building	73
	З.	Multipurpose Tenant Building	76
	4.	Urban Small-Scale Building	79
	5.	Hospitals	80
	6.	Schools	82
	7.	Hotels (convention halls, wedding halls)	84
	8.	Public Halls (combination facilities such as day-care centres)	85
CHAF	PTE	R 7 Installation Considerations	
	1.	LGH-Series Lossnay Ceiling Embedded-Type (LGH-RX3 Series)	88
	2.	Business Lossnay Suspended Exposed-Type	91
	3.	Building Lossnay Pack-type (LP-200B, 350B · 500B · 750B · 1000B)	92
	4.	Building Lossnay Unit Vertical-type (LUT-2302 · 2303 · 3002 · 3003)	95

Building Lossnay Unit Horizontal-type (LU-80 · 160 · 500)
 Industrial Moisture Resistant Lossnay (LUP-80 · 160 · 500)
 100

CHAPTER 8 Filtering for Freshness

1.	Necessity of Filters	104
2.	Data Regarding Dust	104
3.	Calculation Table for Dust Collection Efficiency of Each Lossnay Filter	105
4.	Comparison of Dust Collection Efficiency Measurement Methods	107
5.	Calculation of Dust Concentration	109

CHAPTER 9 Service Life and Maintenance

1.	Service Life	 2
2.	Cleaning the Lossnay Core and Pre-filter	 2

CHAPTER 10 Ventilation Standards in Each Country

1.	Ventilation Standards in Each Country	114
2.	U.S	125
3.	U.K	125

CHAPTER 11 Lossnay Q and A

CHAPTER 1

Ventilation for Healthy Living

Fresh outdoor air must be introduced constantly at a set ratio in an air conditioning system. This fresh air is introduced to be mixed with the return air from the room, to adjust the temperature and humidity, supply oxygen, reduce body and other odors, remove tobacco smoke and to increase the cleanness of the air.

The standard ventilation (outdoor air intake) volume is determined according to the type of application, estimated number of persons in the room, room area, and relevant regulations. Systems which accurately facilitate these requirements are increasingly being required to be installed in buildings.

1. Necessity of Ventilation

The purpose of ventilation is basically divided into "oxygen supply", "cleaning of air", "temperature control" and "humidity control". Cleaning of the air includes the elimination of "odors", "gases", "dust" and "bacteria". The needs of ventilation are divided into "personal comfort", "assurance of environment for animals and plants", and "assurance of environments for machinery and constructed materials".

In Japan legal regulations regarding ventilation are set in the Building Srandard Law Enforcement Ordinance and the "Building Management Law" for securing a sanitary environment in buildings. These are in general agreeance with similar regulations in other countries.

1.1 Room air environment in buildings

In Japan, the Building Management Law, a law concerning the sanitary environment of buildings, designates eleven applications including offices, shops, and schools with a total floor area of 3,000 m² or more, as buildings. According to this law maintenance and management of the ventilation and water supply and discharge according to the Environmental Sanitation Management Standards is obligatory.

The following table gives a specific account of buildings in Tokyo. (Tokyo Food and Environment Guidance Center Report)

Specific Account of Buildings in Tokyo (March, 1993)

	Number of buildings	%
Offices	2,346	65.4
Shops	344	9.6
Department Stores	73	2.0
Schools	388	10.8
Inns	164	4.6
Theaters	84	2.3
Libraries	30	0.8
Museums	15	0.4
Assembly Halls	95	2.6
Art Museums	7	0.2
Amusement Centers	42	1.2
Total	3,588	100.0

Note: Excludes buildings with an expanded floor space of 3,000 to 5,000 m² in particular areas.

The ratio of results of the air quality measurement public inspection and the standard values that were not met (percentage of unsuitability) for the approximately 500 buildings examined in 1980 is shown in the chart at the right.

There was a large decrease in unsuitable percentages of floating particles, but there was almost no change in temperature and carbon dioxide. Values for temperature, ventilation, and carbon monoxide almost entirely cleared the standard values, and are excluded. The study from 1989 shows the item with the highest percentage of unsuitability as temperature with 37%, followed by carbon dioxide at 15%.

Percentage of unsiutability of air quality by year

In the case of Japan, an Instruction Guideline based on these regulations has been issued, and unified guidance is carried out. Part of the Instruction Guideline regarding ventilation is shown below.

- The fresh outdoor air intake must be 10 m or higher from ground level, and be distanced appropriately from the exhaust air outlet. (Neighbouring buildings must also be considered.)
- The fresh outdoor air intake volume must be 25 to 30 m³/h·person in design.
- An air volume measurement hole must be installed at an effective position to measure the treated air volume of the ventilating device.
- The position and shape of the supply diffuser and return grille must be selected so the air environment in the room is distributed evenly.

1.2 Effect of air contamination on human bodies

Effect of oxygen (O₂) concentration

Concentration (%)	Standards and effect of concentration changes		
Approx. 21	Standard atmosphere.		
20.5	Ventilation air volume standard will be a guideline where concentration does not decrease more than 0.5% from normal value. (The Building Standard Law of Japan)		
20 - 19	An oxygen deficiency of this amount does not directly endanger life in a normal air pressure, but if there is a combustion device in the area, the generation of CO will increase rapidly due to incomplete combustion.		
18	Industrial Safety and Health Act. (Hypoxia prevention regulations.)		
16	Normal concentration in exhaled air.		
16 - 12	Increase in pulse and breathing resulting in dizziness and headaches.		
15	Flame in combustion devices will extinguish.		
12	Threat to life in short term.		
7	Fatal		

Effect of carbon monoxide (CO)

10,000 ppm = 1%

Concentration (ppm)	m) Effect of concentration changes		
0.01 - 0.2	Standard atmosphere.		
5	Considered to be the long-term tolerable value.	value. w for Maintenance of Sanitation in Buildings. a. e value. Apprpx. 5 ppm is an annual average value in city areas. This value may	
10	The Building Standard Law of Japan, Law for Maintenance of Sanitation in Buildings. Environmental standard 24-hour average.		
20	Considered to be the short-term tolerable value. Environmental standard 8-hour average.		
50 Tolerable concentration for labor environment. (Japan Industrial Sanitation Association) exc nea tun		exceed 100 ppm near roads, in tunnels and	
100No effect for 3 hours. Effect noticed after 6 hours. Headache, illness after 9 hours; harmful for long-term but not fatal.principal			
200	Light headache in the forehead in 2 to 3 hours.		
400	Headache in the forehead, nausea in 1 to 2 hours; headache in the back of head in 2.5 to 3 hours.		
800	Headache, dizziness, nausea, convulsions in 45 minutes. Comatose in 2 hours.		
1,600	Headache, dizziness in 20 minutes. Death in 2 hours.		
3,200	Headache, dizziness in 5 to 10 minutes. Death in 30 minutes.		
6,400	Death in 10 to 15 minutes.		
12,800	Death in 1 to 3 minutes.		
Several 10,000 ppm (Several %)	This level may be found in automobile exhaust.		

Effect of	ⁱ carbon	dioxide	(CO2)
-----------	---------------------	---------	-------

Concentration (%)	Effect of concentration changes			
0.03 (0.04)	Standard atmosphere.			
0.04 - 0.06	City air.			
0.07	Tolerable concentration when many people stay for long time.	There is no toxic level in		
0.10	General tolerable concentration. The Building Standard Law of Japan, Law for Maintenance of Sanitation in Buildings.			
0.15 Tolerable concentration used for ventilation calculations. Guideline of the contamination of when the physic chemical properties of the air deteriors proportion to the increase of CO 0.2 - 0.5 Observed as relatively poor. Chemical properties of the air deteriors proportion to the increase of CO		guideline of the contamination estimated		
		when the physical and chemical properties of the air deteriorate in		
		proportion to the increase of CO ₂ .		
0.5	Long-term safety limits (U.S. Labor Sanitation) ACGIH, regulation of laborer offices.			
2	Depth of breathing and inhalation volume increases 30%.			
3	Work and physical functions deteriorate, breathing doubles.			
4	Normal exhalation concentration.			
4 - 5	The respiratory center is stimulated; depth and times of breathing increases. Dangerous if breathed in for a long period. If an O ₂ deficiency also occurs, trouble will occur sooner and be more dangerous.			
8	When breathed in for 10 minutes, breathing difficulties, redness in the face and headaches will occur. The trouble will worsen when there is also a deficiency of O ₂ .			
18 or more	Fatal			

Note: According to Facility Check List published by Kagekuni-sha.

1.3 Effect of air contamination in buildings

• Dirtiness of interior

New ceilings, walls and ornaments will turn yellow in one to two years. This is caused by dust and the tar in tobacco smoke.

2. Ventilation Standards

The legal standards for ventilation differ according to each country. Please follow the standards set by the country. In the US, Ashrae revised their standards in 1989 becoming more strict.

In Japan, regulations are set in the The Building Standard Law of Japan Enforcement Ordinance, the so-called "Building Management Law" for securing a sanitary environment in buildings. According to the Building Standards Law, a minimum of 20 m³/h per person of ventilation air is required.

3. Ventilation Method

3.1 Ventilation class and selection points

An appropriate ventilation method must be selected according to the purpose.

Ventilation is composed of "Supply air" and "Exhaust air" functions. These functions are classified according to natural flow or mechanical ventilation using a fan (forced ventilation).

Classification of ventilation (according to Building Standards Law)

	Supply	Exhaust	Ventilation volume	Room pressure
Class 1	Mechanical	Mechanical	Random (constant)	Random
Class 2	Mechanical	Natural	Random (constant)	Positive pressure
Class 3	Natural	Mechanical	Random (constant)	Negative pressure
Class 4	Natural	Mechanical & natural	Limited (inconstant)	Negative pressure

Classification of mechanical ventilation

	Ex. of application	System effect	Design and construction properties	Selection points
1. Class 1 ventilation	 Ventilation of air 	By changing the	An ideal design in which	Accurate supply air
Fresh outdoor air is mechanically	conditioned rooms.	balance of the supply	the supply air diffuser	diffuser can be
brought in and simultaneously the	(buildings, hospitals,	fan and exhaust fan's	and exhaust air outlet	maintained.
stale air in the room is mechanically	etc.)	air volumes, the	position relation and air	The room pressure
discharged.	 Ventilation of room 	pressure in the room	volume, etc., can be set	balance can be
	not facing an outer	can be balanced	freely is possible.	maintained.
	wall. (basement,	freely, and the	A system which adjusts	 The supply air
	etc.)	interrelation with	the temperature and	diffuser temperature
	 Ventilation of large 	neighboring spaces	humidity of the supply	and humidity can be
	room. (office, large	can be set freely.	air diffuser flow to the	adjusted and dust
Fresh	conference room,		room environment can	treatment is
air	hall, etc.)		be incorporated.	possible.
fan			 The supply and 	
			exhaust volume can be	
			set freely according to	
			the changes in	
			conditions.	
2. Class 2 ventilation	 Surgery theatre. 	As the room is	 The position and 	 The pressure is
Fresh outdoor air is mechanically	 Clean rooms. 	pressurized, the flow	shape of the supply	positive.
brought in and the exhaust air is	Foodstuff processing	of odors and dust,	air diffuser can be	 The supply air diffuser
discharged from the exhaust air	factories.	etc., from neighboring	set.	temperature and
outlet (natural).		areas can be	• The temperature and	humidity can be
Exhaust		prevented.	humidity of the	adjusted, and dust
Exhaust			supply air diffuser	treatment is possible.
fan k-			flow can be set	 The positional relation
			accordingly, and	of the exhaust air
			dust can be removed	outlet to the supply air
			as required.	diffuser is important.
3. Class 3 ventilation	Local ventilation in	The exhaust air is	Effective exhausting	• The room pressure
The stale air in the room is	kitchens.	removed from a local	of dispersed stale air	is negative.
mechanically discharged and	Ventilation of hot	position in the room,	generation sites is	Local exhaust is
simultaneously fresh outdoor air is	exhaust air from	and dispersion of the	possible from a local	possible.
mechanically introduced from the	machine room, etc.	stale air can be	exnaust air outlet.	Ventilation without
supply air diffuser (natural).	ventilation of numid	prevented by applying	Ventilation in which	dispersing stale air is
	exnaust air from	an entire negative	the air flow is not felt	possible.
Supply	roome etc	pressure.	is possible with the	 ventilation with
air diffuser	General simple		supply air diffuser	reduced air flow is
			seuing meinoù.	possible.
È Exhaust				• The positional relation
Tan Tan				or the exhaust all
				diffusor is important
				unuser is important.

3.2 Comparison of ventilation methods

There are two main types of ventilation methods.

Centralized ventilation method

This is mainly used in large buildings, with the fresh outdoor air intake being installed in one machine room. For this method, primary treatment of the fresh outdoor air, such as heat recovery to the intake air and dust removal is performed being distribution to the building by ducts.

Independent zoned ventilation method

This is mainly used in small to medium sized buildings, with areas being ventilated using fresh outdoor air intakes formed of independent ventilation devices. The rate of use of this method has recently increased as independent control is becoming ever more feasible.

Centralised ventilation method

Independent zoned ventilation method

	Centralized ventilation method	Independent zoned ventilation method
Fan power	The air transfer distance is long thus requiring much fan power.	As the air transfer distance is short, the fan power is small.
Installation space	 Independent equipment room is required. Duct space is required. Penetration of floors with vertical shaft is not desired in terms of fire prevention. 	 Independent equipment room is not required. Piping space is required only above the ceiling.
Zoning	Generalized per system.	Can be utilised for any one area.
Designability	 Design of outer wall is not lost. The indoor supply air diffuser and return grille can be selected freely for an appropriate design. 	 The number of intakes and exhaust air outlets on the outer wall will increase; design must be considered. The design will be fixed due to the installation fittings, so the design of the intakes and exhaust air outlets must be considered.
Clarification of costs	As there are many common-use areas, if the building is a tenant building, an accurate assessment of operating cost is difficult.	Invoicing for each zone separately is possible, even in a tenant building.
Controllability	 As the usage time setting and ventilation volume control, etc., is performed in a central monitoring room, the user's needs may not be met appropriately. A large amount of ventilation is required even for a few persons. 	 The user in each zone can operate the ventilator freely. The ventilator can be operated even during off-peak hours.
Comfort	 An ideal supply air diffuser and return grille position can be selected as the supply air diffuser and return grilles can be laid out freely. The only noise in the room is the aerodynamic sound. Anti-vibration measures must be taken as the fan in the equipment room is large. 	 Consideration must be made of the noise from the main unit. Anti-vibration measures are often not required as the unit is compact and the vibration generated can be dispersed.
Maintenance and management	 Centralized management is easy as it can be performed in the equipment room. The equipment can be inspected at any time. 	 Work efficiency is poor as the equipment is not centrally located. An individual unit can be inspected only when the room it serves is vacant.
Trouble correspondence	 Large as the entire system is affected. Immediate inspection can be performed in the equipment room. 	 Limited as only independent units are affected. Consultation with the tenant is required prior to inspection of an individual unit.

Comparison of centralised ventilation method and independent zoned ventilation method

4. Ventilation Performance

The ventilation performance is largely affected by the installation conditions. Ample performance may not be achieved unless the model and usage methods are selected according to the conditions.

Generally, the ventilation performance is expressed by "Air volume" and "wind pressure (static pressure)", and these are necessary when considering ventilation.

4.1 Air volume

Air volume expresses the volume of air exhausted (or supplied) by the unit in a given period. Generally, this is expressed as m^{3} /hr (hour).

4.2 Wind pressure

When a piece of paper is placed in front of a fan and let go, the piece of paper will be blown away. The force that blows the paper away is called the wind pressure, and this is normally expressed in units of mmH₂O or mmAq {Pa (Pascal) in SI unit system: $1 \text{ mmH}_2\text{O} = \text{approx}$. 9.8Pa}. The wind pressure is divided into the following three types:

4.2.1 Static pressure

This is the force that presses the surroundings when the air is still such as in an automobile tyre or rubber balloon. For example, in a water gun, the hydraulic pressure increases when pressed by a piston, and if there is a small hole, the water sprays out with force. The pressure of this water is equivalent to the static pressure for air. The higher the pressure is, the further the water (air) can be sprayed.

4.2.2 Dynamic pressure

This expresses the speed at which air flows, and can be thought of as the force at which a typhoon presses against a building.

4.2.3 Total pressure

This is the total force that wind has, and is the sum of the static pressure and dynamic pressure.

4.3 Measurement of the air volume and wind pressure

Mitsubishi measures the machine's air volume and wind pressure with a device as shown below according to the Japan Industrial Standards (JIS B 8628).

Measuring device using orifice (JIS B 8628 standards)

Measurement method

The unit is operated with the throttle device fully closed. There is no air flow at this time, and the air volume is 0. The maximum point of the static pressure (A point, the static pressure at this point is called the totally closed pressure) can be obtained. Next, the throttle device is gradually opened, the auxiliary fan is operated, and the middle points (points B, C and D) are obtained. Finally, the throttle device is completely opened, and the auxiliary fan is operated until the static pressure in the chamber reaches 0. The maximum point of the air volume (point E, the air volume at this point is called the fully opened air volume) is obtained. The points are connected as shown below, and are expressed as air volume, static pressure curves (Q-H curve).

5. Outdoor Air (ventilation) Load

5.1 How to calculate each approximate load

The outdoor air load can be calculated with the following formula if the required outside air intake volume Q m³/h to be introduced is known:

(Outdoor air load) = $\gamma \cdot QF \cdot (iO - iR)$

 $= \gamma [kg/m^3] \times S[m^2] \times k \times n \ [person/m^2] \times Vf \ [m^3/h \cdot person] \times (iO - iR): \Delta i \ [kJ/kg \ (kcal/kg)]$

- $\gamma~:~Specific gravity of air$ 1.2 kg/m³
- S : Building's airconditioned area
- k : Thermal coefficient; generally 0.7 0.8.
- n : The average population concentration is the inverse of the occupancy area per person. If the number of persons in the room is unclear, refer to the Floor space per person table below.
- Vf: Outdoor air intake volume per person
 - Refer to the Required outdoor air intake volume per person table below.
- io : Outdoor air enthalpy kJ/kg (kcal/kg')
- iR : Indoor enthalpy kJ/kg (kcal/kg')

Floor space per person table (m²)

(According to the Japan Federation of Architects and Building Engineers Associations)

		De	partment store, sh	Destaurant	Teatre or	
	Onice building	Average	Crowded	Empty	Restaurant	cinema hall
General design	4 - 7	0.5 - 2	0.5 - 2	5 - 8	1 - 2	0.4 - 0.6
value	5	3.0	1.0	6.0	1.5	0.5

Required outdoor air intake volume per person table (m³/h·person)

		Required ventilation volume		
Degree of smoking	Application example	Recommended value	Minimum value	
Extremely heavy	Broker's office Newspaper editing room Conference room	85	51	
Quite heavy	Bar Cabaret	51	42.5	
Heavy	Office Restaurant	25.5	17 20	
Light	Shop Department store	25.5	17	
None	Theatre Hospital room	25.5 34	17 25.5	

▲ Caution

The application of this table to each type of room should be carefully considered in relation to the degree of smoking in the room.

Example calculations of determining ventilation load during both cooling and heating are given as follows:

5.2 Ventilation load during cooling (in general office building)

• Classification of cooling load

	Class	
(a)	Indoor infiltration heat	Heat from walls (qws) Heat from glass from direct sunlight (qGS) from conduction & convection (qGS) Accumulated heat load in walls (qSS)
(b)	Indoor generated heat	Generated heat from people
(c)	Reheating load	(qRL)
(d)	Outdoor air load	<pre>{ Sensible heat (qFs) { Latent heat (qFL)</pre>

(a) is the heat infiltrating the room, and often is 30 to 40% of the entire cooling load.

(b) is the heat generated in the room.

(c) is applies only when reheating is necessary.

(d) is the heat generated when outdoor air is mixed into part of the supply air diffuser volume and introduced into the room. The outdoor air is introduced to provide ventilation for the people in the room, and is referred to as the ventilating load.

Typical load values (during cooling)

Туре	e of load	Load
Outdoor air load		53.0 W/m² (45.6 kcal/h⋅m²)
Indoor generated heat	People	26.4 W/m ² (22.7 kcal/h·m ²)
	Lighting equipment	30.0 W/m² (25.8 kcal/h⋅m²)
Indoor infiltration heat		47.6 W/m² (40.9 kcal/h·m²)
Total		157.0 W/m ² (135.0 kcal/h·m ²)
		-

Conditions: Middle floor of a general office building facing south.

Cooling load per unit area

When the volume of outdoor air per person is 25 m³/h, and the number of persons per 1 m² is 0.2, the cooling load will be approximately 157.0 W/m² (135 kcal/h·m²).

How these values are determined can be seen as follows:

Outdoor air load

Air conditions <Standard design air conditions in Tokyo>

		Dry bulb temp.	Relative humidity	Wet bulb temp.	Enthalpy	Enthalpy difference
Cooling	Outdoor air	33 °C	63%	27 °C	85 kJ/kg (20.3 kcal/kg')	31.8 kJ/kg
Cooling	Indoors	26 °C	50%	18.7 °C	53.2 kJ/kg (12.7 kcal/kg')	(7.6 kcal/kg')

When the load per floor area of 1 m² with a ventilation volume of 25 m³/h·person is calculated with the above air conditions, the following is obtained:

Outdoor air (ventilation) load = 1.2 kg/m^3 (Specific gravity of air) $\times 0.2 \text{ persons/m}^2$ (no. of persons per 1 m²)

× 25 m³/h·person (outdoor air volume) × 31.8 kJ/kg (7.6 kcal/kg') (air enthalpy difference indoors/outdoors)

= 190.8 kJ/h·m² (530 W/m²)

The Lossnay recuperates approximately 70% of the exhaust air load and saves on approximately 20% of the total load.

• Determining internal heat gain

When classifying loads, the internal heat gain (indoor generated heat + indoor infiltration heat) will be the value of the outdoor air load subtracted from the approximate cooling load when it is assumed that there is no reheating load.

(Internal heat gain)

- = 157.0 W/m² (135 kcal/h·m²) 53.0 W/m² (45.6 kcal/h·m²) = 104.0 W/m² (89.4 kcal/h·m²)
- This value of internal heat gain is based on assumptions for typical loads. To determine individual levels of internal heat gain, the following is suggested:

• Indoor generated heat

(1) Heat generated from people
 Heat generation design value per person in office

The heat generated per 1 m² of floor space is

(heat generated from people)

= 132.0 W·person (113 kcal/h·person) × 0.2 person/m² = 26.4 W/m² (22.6 kcal/h·m²)

(2) Heat generated from electrical equipment (lighting) The approximate value of the room illuminance and power for lighting for a general office with illuminance of 300 -350 Lux, is 20 - 30 W/m².

• Indoor infiltration heat

This is the heat that infiltrates into the building from outside. This can be determined by subtracting the amount of heat generated by people and lighting from the internal heat gain. (Indoor infiltration heat)

 $= 104.0 - (26.4 + 30.0) = 47.6 \text{ W/m}^2 (40.9 \text{ kcal/h} \cdot \text{m}^2)$

The Lossnay recuperates approximately 70% of the outdoor air load and saves on approximately 20% of the total load.

5.3 Ventilation load during heating

• Classification of heating load

	Class	
		Heat lost from walls (qws)
(2)	Indoor heat	Heat lost from glass (q _{GS})
(a)	loss	Heat loss from conduction & convection (qgs)
		Accumulated heat load in walls (qss)
(b)	Outdoor air	Sensible heat (qFs)
(0)	load	Latent heat (q⊧∟)

During heating, the heat generated by people and electrical equipment in the room can be subtracted from the heating load. However, as the warming up time at the start of heating is short, this generated heat may be ignored in some cases.

Percentage of load

Type of load	Load
Outdoor air load	56.0 W/m ² (48.2 kcal/h·m ²)
Internal heat	77.7 W/m ² (66.8 kcal/h·m ²)
Total	133.7 W/m ² (115.0 kcal/h·m ²)

Conditions: Middle floor of a general office building facing south.

Internal heat loss

In terms of load classification, the internal heat loss is the value of the outdoor air load subtracted from the approximate heating load.

Internal heat loss = 133.7 W/m² (115.0 kcal/h·m²) - 56.0 W/m² (48.2 kcal/h·m²) = 77.7 W/m² (66.8 kcal/h·m²)

Heating load per unit area

When the outdoor air volume per person is 25 m³/h, and the number of persons per 1 m² is 0.2 persons, the approximate heating load will be approximately 133.7 W/m² (115 kcal/h·m²).

Outdoor air load

Air conditions <Standard design air conditions in Tokyo>

		Dry bulb temp.	Relative humidity	Wet bulb temp.	Enthalpy	Enthalpy difference
Heating	Outdoor air	0 °C	50%	–3 °C	5.0 kJ/kg (1.2 kcal/kg')	33.5 kJ/kg
rieating	Indoors	20 °C	50%	13.7 °C	38.5 kJ/kg (9.2 kcal/kg')	(8.0 kcal/kg')

When the load per 1 m² of floor area with a ventilation volume of 25 m³/h·person is calculated with the above air conditions, the following is obtained:

Outdoor air (ventilation) load = 1.2 kg/m³ × 0.2 persons/m² × 25 m³/h·person × 33.5 kJ/kg (8.0 kcal/kg')

= 201.0 kJ/h·m² (56 W/m²)

The Lossnay recuperates approximately 70% of the outdoor air load and saves on approximately 30% of the total load.

CHAPTER 2

Lossnay Construction and Principle

1. Construction and Features of Lossnay

Lossnay construction

The Lossnay is constructed so that the exhaust air passage from the indoor side to the outdoor side (RA \rightarrow EA) and the fresh air passage from the outdoor side to the indoor side (OA \rightarrow SA) cross. The Lossnay heat recovery unit (Lossnay Core) is installed at this cross point, and recovers the heat by conduction through the separating medium between these airflows. This enables the heat loss during exhaust to be greatly reduced.

- * RA : Return Air
- EA : Exhaust Air
- OA : Outdoor Air
- SA : Supply Air

Main Features of Lossnay

- (1) Cooling and heating maintenance fees are saved while ventilating.
- (2) The capacity and performance of the air conditioner can be reduced.
- (3) Dehumidifying during summer, and humidifying during winter is possible.
- (4) Comfortable ventilation is possible, (the outdoor air being adjusted to the room temperature.)
- (5) Effective sound-proofing.

2. Construction and Principle of Core

• Simple construction

The Lossnay Core is a cross-flow total heat recovery unit constructed of plates and fins made of treated paper.

The fresh air and exhaust air passages are totally separated allowing the fresh air to be introduced without mixing with the exhaust air.

• Principle

The Lossnay Core uses the heat transfer properties and moisture permeability of the treated paper. Total heat (sensible heat plus latent heat) is transferred from the stale exhaust air to the fresh air being introduced into the system when they pass through the Lossnay. Try this simple experiment. Roll a piece of paper into a tube and blow through it. Your hand holding the paper will immediately feel warm. If cold air is blown through the tube, your hand will immediately feel cool. Lossnay is a total heat exchanger that utilizes these special properties of paper.

• Treated paper

The paper partition plates are treated with special chemicals so that the Lossnay Core is an appropriate heat recovery unit for the ventilator. This paper differs from ordinary paper, and has the following unique properties.

- (1) The paper is incombustible and is strong.
- (2) The paper has selective hydroscopicity and moisture permeability that permits the passage of water vapor only (including some water-soluble gases).
- (3) The paper has gas barrier properties that does not pass gases such as CO₂.

A comparison of the ordinary paper and the Lossnay Core plates is as shown in the table.

Total heat recovery mechanism

Sensible heat and latent heat

The heat that enters and leaves in accordance with changing temperature (rise or drop) is called sensible heat. The heat that enters and leaves due to the changes in a matter's physical properties (evaporation, condensation) is called latent heat.

(1) Temperature (sensible heat) recovery

- 1) Heat conduction and heat passage is performed through a partition plate from the high temperature to low temperature side.
- 2) As shown on the right, the heat recovery efficiency is affected by the resistance of the boundary layer, and for the Lossnay there is little difference when compared to materials such as copper or aluminium which also have high thermal conductivity.

t1 Ra1 Rp Ra2 t2 Partition plate Ra1+Ra2>Rp

Heat resistance coefficients

	Treated paper	Cu	AI
Raı	10	10	10
Rp	1	0.00036	0.0006
Ra ₂	10	10	10
Total	21	20.00036	20.0006

(2) Humidity (latent heat) recovery

• Water vapor is moved through the partition plate from the high humidity to low humidity side by means of the differential pressure in the vapor.

3. Calculation of the Total Heat Recovery Efficiency

The Lossnay Core's heat recovery efficiency can be considered using the following three transfer rates:

- (1) Temperature (sensible heat) recovery efficiency
- (2) Humidity (latent heat) recovery efficiency
- (3) Enthalpy (total heat) recovery efficiency

The heat recovery effect can be calculated if two of the above efficiencies is known. (The temperature and enthalpy efficiencies are indicated in the applicable catalogue.)

- Each recovery efficiency can be calculated with the formulas given below.
- When the supply air volume and exhaust air volume are equal, the heat recovery efficiencies on the supply and exhaust sides are the same.
- When the supply air volume and exhaust air volume are not equal, the total heat recovery efficiency is low if the exhaust volume is lower, and high if the exhaust volume is higher.

Refer to the Heat Recovery Efficiency Correction Curve in the applicable catalogue for more details.

Item	Formula
Temperature recovery efficiency (%)	$\eta t = \frac{t (OA) - t (SA)}{t (OA) - t (RA)} \times 100$
Enthalpy recovery efficiency (%)	$\eta i = \frac{i \text{ (OA)} - i \text{ (SA)}}{i \text{ (OA)} - i \text{ (RA)}} \times 100$

- η: Efficiency (%)
- t : Dry bulb temperature (°C)
- i : Enthalpy (kJ/kg) (kcal/kg')

Calculation of air conditions after passing through Lossnay

If the Lossnay heat recovery efficiency and the conditions of the room and outdoor air are known, the conditions of the air entering the room and the air exhausted outdoors can be determined with the following formulas.

	Supply side	Exhaust side
Temperature	tsa = toa - (toa - tra) $\cdot \eta t$	$tea = tra + (toa - tra) \cdot \eta t$
Enthalpy	isa = ioa - (ioa - ira) · ηi	iea = ira + (ioa - ira) · ηi

4. What is a Psychrometric Chart?

The chart which shows the properties of humid air is called a psychrometric chart. The psychrometric chart can be used to find the (1) Dry bulb temperature, (2) Wet bulb temperature, (3) Absolute humidity, (4) Relative humidity, (5) Dew point and (6) Enthalpy (total heat) of a certain air condition. If two of these values are known beforehand, the other values can be found with this chart. The way that the air will change when it is heated, cooled, humidified or dehumidified can also be seen easily on the chart.

(1) Dry bulb temperature t (°C)

Generally referred to as standard temperature this is measured with a dry bulb thermometer (conventional thermometer). The obtained value is the dry bulb temperature.

TT Temperature (°C rec point humidity x (kg/kg' Absolute The dew point t" of the air at point A is the temperature of the point at the same absolute humidity as point A on the saturation curve. Α Parallel to absolute temperature scale line t" °C dew point

(2) Wet bulb temperature t' (°C)

When a dry bulb thermometer's heat sensing section is wrapped in a piece of wet gauze and an ample air flow (3 m/s or more) is applied, the heat applied to the wet bulb by the air and the heat of the water vapor that evaporates from the wet bulb will balance at an equal state. The temperature indicated at this time is called the wet bulb temperature.

(3) Absolute humidity x (kg/kg')

The weight (kg) of the water vapor that corresponds to the weight (kg') of the dry air in the humid air is called the absolute humidity.

(4) Relative humidity ϕ (%)

The ratio of the water vapor pressure Pw in the humid air and the water vapor pressure Pws in the saturated air at the same temperature is called the relative humidity. This is obtained with the following formula:

 $\phi R = Pw/Pws \times 100$

(5) Dew point t" (°C)

The water content in the air will start to condense when air is cooled.

The dry bulb temperature at this time is called the dew point.

(6) Enthalpy i (kJ/kg) (kcal/kg')

Physical matter has a set heat when it is at a certain temperature and state. This retained heat is called the enthalpy, with dry air at 0 $^{\circ}$ C being set at 0.

5. Calculation of Lossnay Heat Recovery

The following figure shows the conditions of various air states when fresh air is introduced through the Lossnay Core. If a conventional sensible heat recovery unit is used alone and is assumed to have the same heat recovery efficiency as Lossnay, the condition of the air supplied to the room is expressed by point A in the figure. This point shows that the air is very humid in summer and very dry in winter.

The air supplied to the room with Lossnay is indicated by point S in the figure. The air is precooled and dehumidified in the summer and preheated and humidified in the winter before it is introduced to the room.

The quantity of heat recovered by using the Lossnay Core can be calculated with the following formula. Total heat recovered: $qT = \gamma \cdot Q \cdot (ioA - isA) [W (kcal/h)]$

 $qT = \gamma \cdot Q \cdot (ioa - isa) [W (kcal/h)]$ $= \gamma \cdot Q \cdot (ioa - iaa) \times \eta i$

 γ = Specific weight of air under standard conditions 1.2 (kg/m³)

- Q = Treated air volume (m³/h)
- t = Temperature (°C)
- x = Absolute humidity (kg/kg')
- i = Enthalpy (kJ/kg) (kcal/kg')
- $\eta =$ Heat recovery efficiency (%)
- Suffix meanings

Where

- OA : Outdoor air
- RA : Return air
- SA : Supply air

CHAPTER 3

General Technical Considerations

1. Lossnay Heat Recovery Effect

1.1 Comparison of outdoor air load of various ventilators

Examples of formulas to compare the heat recovered and outdoor air load when ventilating with the Lossnay (total heat recovery unit), sensible heat recovery ventilation (sensible HRV) and conventional ventilators are shown below.

(1) Cooling during summer

- Conditions
- Model LGH-50R type (at 50Hz, high speed)
- Ventilation rate: 500 m³/h (specific gravity of air $\rho = 1.2 \text{ kg/m}^3$)
- Heat recovery efficiency table (%) (F r)

F	0	r	s	u	n	٦r	n	e	ľ

	Lossnay	Sensible HRV	Conventional ventilator
Temperature (sensible heat)	77	77	-
Enthalpy (total heat)	61.5	18.2*	-

Calculation example

• Lossnay (Supply air diffuser temperature) $tsA = 33^{\circ}C - (33^{\circ}C - 26^{\circ}C) \times 0.77 = 27.6^{\circ}C$ (Supply air diffuser enthalpy) $hsA = 85.0 - (85.0 - 53.2) \times 0.615 = 65.4 \text{ kJ/kg}$ Heat recovered $(85.0 - 65.4) \times 1.2 \times 500 = 11,760 \text{ kJ/h} = 3.3 \text{ kW} (2,809 \text{ kcal/h})$ Outdoor air load $(65.4 - 53.2) \times 1.2 \times 500 = 7,320 \text{ kJ/h} = 2.0 \text{ kW} (1,749 \text{ kcal/h})$ • Sensible HRV (Supply air diffuser temperature) $tsA = 33^{\circ}C - (33^{\circ}C - 26^{\circ}C) \times 0.77 = 27.6^{\circ}C$ (Supply air diffuser enthalpy) $hsA = 79.2 \text{ kJ/kg} (18.9 \text{ kcal/kg}) (from psychrometric chart)$ Heat recovered $(85.0 - 79.2) \times 1.2 \times 500 = 3,480 \text{ kJ/kg} = 1.0 \text{kW} (831 \text{ kcal/h})$ Outdoor air load $(79.2 - 53.2) \times 1.2 \times 500 = 15,600 \text{ kJ/H} = 4.3 \text{ kW} (3,727 \text{ kcal/h})$ [Calculated enthulpy recovery efficiency $3,480 \pm (3,480 + 15,600) \times 100 = 18.2$] • Conventional ventilator If a conventional ventilator is used, the heat recovered will be 0 as the supply air diffuser is equal to the outdoor air. The outdoor air load is: $(85.0 - 53.2) \times 1.2 \times 500 = 19,080 \text{ kJ/h} = 5.3 \text{ kW} (4558 \text{ kcal/h})$		di d
--	--	--

Summer conditions

(2) Heating during winter

Conditions:

- Model LGH-50R type (at 50Hz, high speed)
- Ventilation rate: 500 m³/h (Specific gravity of air ρ = 1.2 kg/m³)
- Heat recovery efficiency table (%) (For winter)

	Lossnay	Sensible HRV	Conventional ventilator
Temperature (sensible heat)	77	77	-
Enthalpy (total heat)	67	44.2*	_

* Calculated volume under below conditions.

		Su	pply air	\langle				
			Lossnay	Sensible HRV	Conventional ventilator			N - .
Dry	bulb temperature	(°C)	15.4	15.4	0			Exhaust
Abs	olute humidity	(g/kg')	4.6	1.8	1.8		\bigvee	
Rela	ative humidity	(%)	43	17	50		\land	
Enth	halpy	(kJ/kg) (kcal/kg')	27.4 (6.5)	19.8 (4.7)	5.0 (1.2)		\mathbf{K}	
Tota	al heat recovered	(kW) (kcal/h)	3.7 (3,211)	2.4 (2,121)	0			
Outo	door air load	(kW) (kcal/h)	1.9 (1,591)	3.2 (2,680)	5.6 (4,802)			Outdoor air
Outo	door air load ratio	(%)	33	57	100	-	temperatur	e 0°C
	- F	Room air				-	Absolute	1.8 g/kg'
Air	Dry bulb temperature	20°C					Relative	50%
conditione	r Absolute humidity	7.2 g/kg	,				Enthalpy	5.0 kJ/kg (1.2 kcal/kg'
	Relative humidity	50%	-					
	Enthalpy	38.5 kJ/ (9.2 kca	kg I/ka')					

Calculation example

• Lossnay
(Supply air diffuser temperature) tsA = $(20^{\circ}C - 0^{\circ}C) \times 0.77 + 0^{\circ}C = 15.4^{\circ}C$
(Supply air diffuser enthalpy) $h_{SA} = (38.5 - 5.0) \times 0.67 + 5.0$
= 27.4 kJ/kg
Heat recovered (27.4 – 5.0) $ imes$ 1.2 $ imes$ 500
= 13,440 kJ/h = 3.7 kW (3,211 kcal/h)
Outdoor air load (38.5 – 27.4) \times 1.2 \times 500
= 6,660 kJ/h = 1.9 kW (1,591 kcal/h)
Sensible HRV
(Supply air diffuser temperature) tsA = $(20^{\circ}C - 0^{\circ}C) \times 0.77 + 0^{\circ}C = 15.4^{\circ}C$
(Supply air diffuser enthalpy) hsA = 19.8 kJ/kg (4.7 kcal/kg')
(from psychrometric chart)
Heat recovered (19.8 – 5.0) \times 1.2 \times 500
= 8,880 kJ/h = 2.5 kW (2,121kcal/h)
Outdoor air load (38.5 – 19.8) \times 1.2 \times 500
= 11,200 kJ/h = 3.1 kW (2,681 kcal/h)
[Calculated enthulpy recovery efficiency $8,880 \div (8,880 + 11,200) \times 100 = 44.2$]
 Conventional ventilator
If a conventional ventilator is used, the supply air diffuser is the same
as the outdoor air and the exhaust is the same as the room air.
Thus the heat recovered is 0 kcal and the outdoor air load is
$(38.5 - 5.0) \times 1.2 \times 500 = 20,100 \text{ kJ/h} = 5.6 \text{ kW} (4,802 \text{ kcal/h})$

Winter conditions

2. Example Heat Recovery Calculation

(1) Setting of conditions

(Note: Tokyo Power, industrial power 6 kV supply)

, ,		1 11 27	
	Units	When Heating	When Cooling
Operation time	(h/yr)	10h/day \times 26 days/mo. \times 5 mo./yr. = 1,300 h/yr	10h/day \times 26 days/mo. \times 4 mo./yr. = 1,040 h/yr
Electricity fee	(yen/kWh)	16.22	17.84
Capacity per 1 kW of electricity	(kW/kW)	3.1	2.6
Energy unit cost	(yen/kWh)	16.22/3.1 = 5.23	17.84/2.6 = 6.86
		0	0

• Return air volume (RA) = 7,200 m³/Hr • Outdoor air volume (OA) = 8,000 m³/Hr • Air volume ratio (RA/OA) = 0.9

• Air conditions

Season		N	/inter heatir	ıg		Summer cooling				
Item	Dry bulb temp. DB [°C]	Wet bulb temp. WB [°C]	Relative humidity RH [%]	Absolute humidity ×[kg/kg (DA)]	Enthalpy h [kJ/kg (DA)]	Dry bulb temp. DB [°C]	Wet bulb temp. WB [°C]	Relative humidity RH [%]	Absolute humidity ×[kg/kg (DA)]	Enthalpy h [kJ/kg (DA)]
Outdoors	0	-2.7	50	0.0018	5.0 (1.2)	33	27.1	63	0.0202	85.0 (20.3)
Indoors	20	13.8	50	0.0072	38.5 (9.2)	26	18.7	50	0.0105	53.0 (12.7)

(2) Selection of Lossnay model (select from treatment air volume catalogue)

- Model name: LU-160 with combination of LU-1605 × 1 unit
- Processing air volume per unit RA = 7,200 m³/Hr, OA = 8,000 m³ Air volume ratio (RA/OA) = 0.9
- Heat recovery efficiency : Heat recovery efficiency = 73%, Enthalpy recovery efficiency (cooling) = 62%, Enthalpy recovery efficiency (heating) = 67%
- Static pressure loss (unit-type) RA = 156.9 Pa, OA = 186.3 Pa (Note: Each with filters)
- Power consumption (pack-type) = none because of unit type

(3) State of indoor supply air

	Heating	Cooling
Temperature [°C]	= { 20 (Indoor temperature) $- 0$ (outdoor air temperature)} \times 0.73 (heat recovery efficiency) + 0 (outdoor air temperature) = 14.6	 = 33 (Outdoor air temperature) - { 33 (outdoor air temperature) - 26 (indoor temperature)} × 0.73 (heat recovery efficiency) = 27.89
Enthalpy [kJ/kg (DA)]	= {38.5 (Indoor enthalpy) $-$ 5.0 (outdoor air enthalpy)} \times 0.67 (enthalpy recovery efficiency) + 5.0(outdoor air enthalpy) = 27.4	 = 85 (Outdoor air enthalpy) - { 85 (outdoor air enthalpy) - 53.2 (indoor enthalpy)} × 0.62 (enthalpy recovery efficiency) = 65.3
Numerical value obtained from above equation and psychometric chart	Dry-bulb temperature = 14.6 °C • Wet-bulb temperature = 9.2 °C Relative humidity = 49% • Absolute humidity = 0.005 kg/kg (DA) Enthalpy = 27.4 kJ/kg (DA)	Dry-bulb temperature = 27.89 °C • Wet-bulb temperature = 22.4 °C Relative humidity = 62% • Absolute humidity = 0.0146 kg/kg (DA) Enthalpy = 65.3 kJ/kg (DA)

(4) Outdoor air load and heat recovered

Caution: See the psychrometric chart on the next page.

	Heating	Cooling
Fresh air load without Lossnay (q1)	= 1.2 (Air specific gravity) \times 8,000 (outdoor air volume) \times { 38.5 (indoor enthalpy) - 5.0 (outdoor air enthalpy) } = 321,600 kJ/h = 89.3 kW	= 1.2 (Air specific gravity) \times 8,000 (outdoor air volume) \times { 85.0 (outdoor air enthalpy) – 53.2 (indoor enthalpy) } = 305,280 kJ/h = 84.8 kW
Outdoor air load with Lossnay (q₂)	= 89.3 (Outdoor air load) (q1) × { 1 - 0.67 (enthalpy recovery efficiency)} = 29.5kW or = Air specific gravity × outdoor air volume × (indoor enthalpy – indoor blow enthalpy)	= 84.8 (Outdoor air load) (q1) × { 1 - 0.62 (enthalpy recovery efficiency) } = 32.2 kW or = Air specific gravity × outdoor air volume × (indoor enthalpy – indoor blow enthalpy)
Heat recovered (q3)	= q1 - q2 = 89.3 - 29.5 = 59.8 or = Outdoor air load (q1) × enthalpy recovery efficiency	$= q_1 - q_2$ = 84.8 - 32.2 = 56.2 kW or = Outdoor air load (q ₁) × enthalpy recovery efficiency
(%) outdoor air load	 Outdoor air load = 89.3 kW = 100% Outdoor air load with Lossnay = 29.5 kW = 33% Heat recovered = 59.8 kW = 67% 	 Outdoor air load =84.8 kW = 100% Outdoor air load with Lossnay = 32.2 kW = 38% Heat recovered = 52.6 kW = 62%

(5) Recovered money (power rates)

	Heating	Cooling
Yearly saved money	 Heat recovered: kW × Unit price yen/W × operation time Hr/year 59.8 kW × 5.232 yen/kWh × (1,300hr/year) 406,580 yen 	= Heat recovered: kW \times Unit price yen/W \times operation time Hr/year = 52.6 kW \times 6.86 yen \times (1,040hr/year) = 375,269 yen
Remarks	If recovered heat is converted to electricity : heating = 59.8 kW/	3.1 = 19.3 kW/h cooling = 52.6 kW/2.6 = 20.2 kW/h

• Psychrometric chart for calculating Lossnay economical effect

The following can be determined from the above calculation results:

- Saving of 59.8 kW of the heating load, and 52.6 kW of the cooling load is possible.
- The heat source equipment and related ventilator capacity that is equivalent to this saved amount can be reduced, thus the operation and maintenance costs can also be saved.
- Approximately 400,000 yen can be saved in operation and maintenance costs during heating and 370,000 yen during cooling, for a total savings of approximately 770,000 yen. Furthermore, as 20.2 kW can be saved from the basic power rates during cooling, approximately 370,000 yen (20.2 × 1,560 yen/month × 12 months) can be saved annually.

3. Calculation of Lossnay Economical Effects

The following is a sample questionnaire from which it is possible to assess the economical benefits of using the Lossnay in particular applications.

(1) Setting of conditions

- Return air volume (RA) = m³/Hr
- m³/Hr • Outdoor air volume (OA) =
- Air volume ratio (RA/OA) =
- Air conditions

Season	Winter heating						Summer cooling				
Item	Dry bulb temp. DB [°C]	Wet bulb temp. WB [°C]	Relative humidity RH [%]	Absolute humidity × [kg/kg']	Enthalpy i kJ/kg (kcal/kg')	Dry bulb temp. DB [°C]	Wet bulb temp. WB [°C]	Relative humidity RH [%]	Absolute humidity × [kg/kg']	Enthalpy i kJ/kg (kcal/kg')	
Outdoors											
Indoors											

=

• Operation time:	Heating =	hours/day	×	days/month	×	months/year = hours/year
	Cooling =	hours/day	×	days/month	×	months/year = hours/year
Energy:	Heating =	Type: Electricity		Cost: ¥		/kWh
	Cooling =		Cost: ¥		/kWh	
	Power rates: Win		Summer: ¥		/kWh	

(2) Selection of Lossnay model (select from treatment air volume catalog)

• Model name:

m³, Air volume ratio (RA/OA) = Processing air volume per unit RA = m³/Hr, OA =

- Heat recovery efficiency : Heat recovery efficiency
 - %, Enthalpy recovery efficiency (cooling) %, =
 - Enthalpy recovery efficiency (heating) =
- % • Static pressure loss (unit-type) RA= mm H₂O OA = mm H₂O (Note: Each with filters)
- Power consumption (pack-type) = none because of unit type

(3) State of indoor blow air

	Heating	Cooling					
Temperature [°C]	 = (Indoor temperature – outdoor air temperature) × heat recovery efficiency + outdoor air temperature = 	 Outdoor air temperature – (outdoor air temperature – indoor temperature) × heat recovery efficiency 					
Enthalpy [kJ/kg(kcal/kg)]	 = (Indoor enthalpy – outdoor air enthalpy) × enthalpy recovery efficiency + outdoor air enthalpy = 	 Outdoor air enthalpy – (outdoor air enthalpy – indoor enthalpy) × enthalpy recovery efficiency 					
Numerical value obtained from above equation and psychometric chart	 Dry-bulb temperature = °C Wet-bulb temperature = °C Relative humidity = % Absolute humidity = kg/kg' Enthalpy = kg/kg (kcal/kg) 	 Dry-bulb temperature = °C Wet-bulb temperature = °C Relative humidity = % Absolute humidity = kg/kg' Enthalpy = kg/kg (kcal/kg) 					

	Heating	Cooling
Fresh air load without Lossnay (q1)	 Air specific gravity × outdoor air volume × (indoor enthalpy – outdoor air enthalpy) 	 Air specific gravity × outdoor air volume × (outdoor air enthalpy – indoor enthalpy)
Outdoor air load with Lossnay (q2)	 Outdoor air load (q1) × (1 – enthalpy recovery efficiency) or Air specific gravity × outdoor air volume × (indoor enthalpy – indoor blow enthalpy) 	 Outdoor air load (q1) × (1 – enthalpy recovery efficiency) or Air specific gravity × fresh air volume × (indoor blow enthalpy – indoor enthalpy)
Heat recovery (q3)	= q1 - q2 = - = or = Outdoor air load (q1) × enthalpy recovery efficiency	= q1 - q2 = - = or = Outdoor air load (q1) × enthalpy recovery efficiency
(%) to outdoor air load	 Outdoor air load = W = % Outdoor air load with Lossnay W = % Heat recovered = W = % 	 Outdoor air load = W = % Outdoor air load with Lossnay W = % Heat recovered = W = %

(4) Outdoor air load and heat recovery

(5) Recovered money (power rates)

	Heating	Cooling
Yearly saved money	 Heat recovered: kW × Unit price ¥/kWh ×	 Heat recovered: kW × Unit price ¥/kWh ×
¥	operation time Hr/year = kW × ¥/kWh × Hr/year	operation time Hr/year = kW × ¥/kWh × Hr/year

4. Psychrometric Chart

5. The Result of No Bacterial Cross Contamination for the Lossnay Core and Determining Resistance of the Lossnay Core to Molds

Test report

This document reports the result that there is no bacterial cross contamination for the Lossnay Core.

(1) Object

The object of this test is to verify that there is no bacterial cross contamination from the outlet air to the inlet air of the Lossnay Core in the heat recovery process.

(2) Client

MITSUBISHI ELECTRIC CO. NAKATSUGAWA WORKS.

(3) Test period

April 26, 1999 - May 28, 1999

(4) Test method

The configuration of the test equipment is shown below. The test bacteria suspension is sprayed in the outlet duct at a pressure of 1.5 kg/cm² with a sprayer whose dominant particle size is 0.3 - 0.5 μ m. The air sampling tubes are installed at the each center of the locations of A, B, C, D, in the Lossnay inlet/outlet ducts so that their openings are directly against the air flow, and then connected to the impinger outside the duct. The impinger is filled with 100 mL physiological salt solution. The airborne bacteria in the duct air are sampled at the rate of 10L air/minute for three minutes.

(5) Test bacteria

The bacteria used in this test are as followed;

Bacillus subtilis IFO 3134

Pseudomonas diminuta IFO14213 (JIS K 3835 Method of testing bacteria trapping capability of precision filtration film elements and modules; applicable to precision filtration film, etc. applied to air or liquid)

(6) Test result

The result of the test with Bacillus subtilis is shown in Table 1. The result of the test with Pseudomonas diminuita is shown in Table 2.

No.	Α	В	С	D
1	$5.4 imes10^4$	$5.6 imes 10^4$	< 10 ³	< 10 ³
2	$8.5 imes 10^3$	$7.5 imes 10^3$	< 10 ³	< 10 ³
3	$7.5 imes 10^3$	< 10 ³	< 10 ³	< 10 ³
4	$1.2 imes 10^4$	$1.2 imes 10^4$	< 10 ³	< 10 ³
5	$1.8 imes 10^4$	$1.5 imes 10^3$	< 10 ³	< 10 ³
Average	$2.0 imes 10^4$	$1.5 imes 10^4$	< 10 ³	< 10 ³

Table 2 Test result with pseudomonas diminuita (CFU/30L air)

No.	Α	В	С	D
1	$3.6 imes10^5$	$2.9 imes10^5$	< 10 ³	< 10 ³
2	$2.5 imes10^5$	$1.2 imes10^5$	< 10 ³	< 10 ³
3	$2.4 imes10^5$	$7.2 imes10^5$	< 10 ³	< 10 ³
4	$3.4 imes10^5$	$8.4 imes10^5$	< 10 ³	< 10 ³
5	$1.7 imes10^5$	$3.8 imes10^5$	< 10 ³	< 10 ³
Average	$2.7 imes 10^5$	$4.7 imes10^5$	< 10 ³	< 10 ³

(7) Considerations

Bacillus subtilis is commonly detected in the air and resistant to dry. Pseudomonas diminuita is susceptible to dry and only a few exists in the air. However, it is used in the performance verification of the bacteria trapping filter since the particle size is small (Cell diameter; $0.5 \mu m$: Cell length 1.0 to 4.0 μm).

Both Bacillus subtilis and Pseudomonas diminuta are detected at the location A and B in the outlet side duct where they are sprayed, but neither them are detected at location C (in the air filtered by the HEPA filter) and the location D (in the air crossed in the Lossnay Core) on the inlet side.

Since the number of bacteria in the location A is substantially equal to one in the location B, it is estimated that only a few bacteria are attached to the Lossnay Core on the outlet side. Also, no test bacteria is detected at the location D where the air is crossed in the Lossnay Core. Therefore, it can be concluded that the bacteria attached to the outlet side will not pass through the inlet side even after the heat is exchanged.

Shunji Okada Manager, Biological Section Kitasato Reseaarch Center of Enviromental Seiences

6. Flame-proofing Properties of Lossnay Core

The Lossnay Core satisfied all requirements of Paragraph 4-3 of the Fire Prevention Law Enforcement Rules. Details of the tests carried out are as seen below.

Passing standards

Residual flame: 5 sec. or lessResidual dust: 20 sec. or lessCarburized area: 40 cm² or less

Washing test

The Lossnay Core was also tested at the Japan Construction General Laboratories according to the fire retardancy test methods of thin materials for construction as set forth by JIS A 1322. The material was evaluated as Class 2 flame retardant. Details of the tests carried out are shown below.

Flame-proofing property test report

Messrs. Mitsubishi Electric Corp., Nakatsugawa Works

Acceptance No.	VF-93-11-(2)
Data of acceptance	September 7, 1993
Data of report	October 12, 1993

Japan Construction General Laboratories 5-8-1 Fujishirodai, Suita City 565 Tel: 06-872-0391

Hiorshi Wakabayashi Dr. of Engineering, Director

Applicant	Applicant Company name				Mitsubishi Electric Corp., Nakatsugawa Works							
Applicant	Addres	s		1-3 Komanba-cho, Nakatsugawa, Gifu								
	Specin	nen type		Single-face la corrugated bo	minated	ł	Produe name	ctLossnay Coree(Total heat recovery unit)				
Specimen and test body	Material structure and cross-sectional diagram, etc. Test body size and thickness (mm)			Single-face laminated corrugated board Thickness: 4 mm (Single-face corrugated board with 2 mm cell size laminated alternately at right angle) Partition (Liner paper) Flame-proof treated paper Thickness: 0.085 mm, Weight: 70 g/m ² Adhesive agent Vinyl acetate resin Weight: 30 g/m ² (Solid) Filler (Flute paper) Colored wood free paper Thickness: 0.093 mm, Weight: 79 g/m ² Adhesive agent Vinyl acetate resin Weight: 30 g/m ² (Solid) Partition (Liner paper) Flame-proof treated paper Thickness: 0.085 mm, Weight: 70 g/m ²								
				300 (Long side) \times 200 (Short side) \times 4 (Thickness)								
	Test body direction			The longer side is the vertical side.								
Testing	Testing standards			Pre-treatment of He test body ti			ing Heating surface class and directio					
method	JIS A 1322 (45° Meckelian burner method)			Method A (drying method) 3 min.			n. bo fr	The direction of which the corrugated board fold was vertical was set as the front of the heating surface.				
	Test date			October 5, 1993					3			
	T	est positio	n	Residual frame	Resi du	dual Ist	Carb length (onized Vertical ×	Discoloration length (Vertical \times	Remarks		
Test results	Class	Direction	No.	(sec.)	(se	ec.)	Horizo	ntal) (cm)	Horizontal) (cm)			
			1	0	0)	8.2	× 4.7	18.7 × 7.3			
	Front	Vertical	2	0	0)	8.4	× 4.9	24.3×7.8	*1		
	3			0	0 0		7.4	× 5.0	22.0×8.4			
Evaluation	Th ret	e specimer ardancy te	n conform	ns to Class 2 fla	ime-proc	ofing (h constru	eating t	ime: 3 n s set for	hin.) according t th by JIS A 132	to the "Fire 2.		
Persons in charge of testing			Material Testing Laboratory Laboratory chief: Hiroshi Tamura, Technicians: Shigeru Fujikawa, Nobuaki Oohiro, Tetsuya Ogawa									

Note: Immediately after starting heating, the flame was ignited simultaneously with the generation of smoke. Penetration was observed approx. 2 min. 30 sec., after heating was started. There were no further changes. The Lossnay core was tested at the Underwriters Laboratories Inc. according to the standard of UL94, Test for Flammability of Plastic Materials for Parts in Devices and Appliances, 1998.

The material was evaluated as per 5VA classified of flammability.

7. Lossnay Core's Soundproofing Properties Test

As the Lossnay Core is made of paper and the permeable holes are extremely small, the Core has outstanding soundproofing properties and is appropriate for ventilation in soundproof rooms.

For example, the exposed ceiling-type LGH-50E has soundproofing characteristics of 33.9 dB with a center frequency of 400 Hz. This means that a sound source of 96.9 dB can be shielded to 63 dB.

	-									N	o. 122-1			
	Sour	_	Test num					Test numbe	r IVA-78-122					
	For Mitsub		Acceptance data : February 22,						y 22, 1979					
	Nakats		Report : May 24, 1979								1979			
	The results of	ne results of the tests are as noted below.				General Building Reseach Corporation								
	General Manager, S. Okushima						Fujishirodai 5-125, Suita-shi, Osaka-Fu, Japan							
						Person in charge of testing: Takeshi Tokura								
Ce	rtificate	IVA-78-122	IVA-78-122 Testing facility General Building Research Corporation						orporation					
number			E Address						1-3 Komanba	-cho, l	Nakatsuga	awa, Gifu		
	Product name LGH-50E			Co	mp	any			Mitsubish	i Elect	ric Corpor	ation		
	Application	Heat exchange-type ventilator	-	na	me				Naka	atsuga	wa works	faat taat" in		
	Application	ventilation	-	me	sting etho	g d			Ministry of	Const	truction No	o. 108		
	manufacture	October 1978		Me	easu	rem	ent			larah (1070			
	Place of	Conoral Building Research Corneration	date					IV	archie	9, 1979				
	assembly			Me	Measurement				Temperature	: 12.5	°C, humid	ity: 77%		
en	Dimensions	W 1250 × H 310 × D 1589	Soundproof or			area								
cim	Area			dimensions			urcu		W 580 × H 190					
Spe	Bemarks	An existing hole (4000 mm × 3000 mm) was	-		Cer	ntre f	reque	ency	125 Hz	50	00 Hz	2,000 Hz		
		covered with a hollow concrete block with				е	oint	1	101.5	9	96.5	98.5		
	Cultures,	double-faced mortar (thickness 20 mm each), with a wood frame with inner dimension of 580 mm \times 190 mm \times 230 mm being installed. The supply/exhaust box and duct was			B	source sid	ant p	2	99.0		_	—		
	installation				el (Leme	3	100.0	9	97.5	98.5		
	method at				e		asu	4	102.0		_	—		
	test facility	mounted in this, and the main unit and	sion lo		sur	Sound	ž	5	101.5	(96.5	98.5		
		Oil clay was filled around the sound source			pre		Ave	rage vel	100.9	9	96.9	98.5		
	Peripheral	sections			punc		t	1	81.5	(63.5	53.0		
Spe	ecimen configura	ation (dimensions mm)	rans	infts	os pe	qe	it poi	2	79.5		_			
Re	er to appendix 1	I, 2 for details. S: 1/20	dt	L res	Isure	n si	emer	3	79.5	(63.0	43.0		
	L	1589	Sour	lent	mea	otio	asur	4	82.5		_	—		
				ren	ach	See	Me	5	81.5	(62.5	43.5		
	84 Steel pla thicknes	te Internal flange hole		Measu	ш	ŭ	Ave le	rage vel	81.1	(63.0	43.2		
310		Steel plate thickness: 0.6			Average sour pressure leve difference (dl			ınd el IB)	19.8	;	33.9	55.3		
Flange steel plate thickness: 1.6 Duct steel plate thickness: 1.6 Urethane foam thickness: 15 0.072 m ² Feed/exhaust box Steel plate thickness: 1 0					Sound absorb by reverberation chamber on reception side Sound transm sion loss (dB)			ion (m²)	ed on 2.79 (m²)		3.90	7.22		
								nis-)	iis- 5.8 18.4 37.1					
Sound Sound							Refe	r to p	bage 35 for deta	ils of t	est results	\$		
						ndp	roofe	ed ar	ea of the specim	en is si	mall in this	test, and as		
Re	marks			the	trans	smis ne in	SION	OT SO d th	e concrete block	surroui wall w	nuing cond	rete block wall		
	Urethane foam and feed/exhaus	(15 mm thick) was stuck onto the inside of the duct st box.		mai	n tes	st, a	nd th	e ma	ain test measurer	nent re	esults were	corrected.		
				Per	sons	in c	harg	e of	testing: Mitsuo N	lorimot	to, Toshifui	mi Murakami		
8. Change in Lossnay Core Over Time

The following details show an example of a building that has installed the Lossnay units, from which it is possible to assess the change in the units over time.

8.1 Outline of building where Lossnay is installed

Building name	: Meiji Seimei, Nagoya Office/shop building 1-1 Shinsakae-machi Naka-ku, Nagoya
No. of floors	: 16 above ground, 2-storey penthouse, 4 basement floors
Total floor space	: 38,893 m ²
Reference floor space	: 1,388 m ²
	Building name No. of floors Total floor space Reference floor space

8.2 Outline of installed ventilation equipment

(1)	Air handling method Chilling unit	: 4 fan coil units (perimeter zone) per floor : Absorption-type 250 kT × 1 unit, turbo 250 kT × 2 units
	Gas direct heating/cooling boiler	± 340 kT, neating 1400×10^{3} kcal/n
(2)	Ventilation method	: Air - air total heat recovery unit "Lossnay" LS-200 \times 18 units installed in penthouse. Outdoor air treatment volume 46,231 CMH, Exhaust air treatment volume 54,335 CMH.

(3) Lossnay outline diagram

: LS-200 (with four Lossnay Cores)

Lossnay duct system diagram

General diagram of penthouse Lossnay chamber

8.3 Outline of Lossnay operation

- (1) Start of operation Start of daily operation End of daily operation
- : September 1972

: November 1983

- : 7:00 : 18:00 Average daily operation 11 hours
- (2) Inspection after usage
- (3) Bypass operation month
- (4) Total operation time
- : Three months of April, May, June
 - : (134 33) months \times 25 days/month \times 11 hours/day = 27,775 hours

8.4 Characteristics in change of Lossnay Core over time

Two Lossnay Cores were removed from the 18 Lossnay LS-200 installed in the Meiji Seimei Building, and the static pressure loss and exchange efficiencies were measured. The comparison with the initial value is shown on the right. The appropriate air volume for one Lossnay Core is 500 m³/hr, and the measurement point was ±200 m³/hr of this value.

Characteristics in change of Lossnay Core over time

8.5 Conclusion

(1) Changes in the characteristics of the Lossnay Core after approximately eleven years of use and an estimated 28,000 operation hours were not found.

In numerical values, the static pressure loss was 15 to 16 mmH₂O at 500 m³/hr which was a 1 mmH₂O increase, and the exchange efficiencies had decreased slightly at above 500 m³/hr. However, this is considered to be insignificant and remained in the measurement error range.

(2) Looking at the appearance, the Core surface was black with dust, but there were no gaps, deformation or mold that would pose problems during practical use.

9. Comparison of Heat Recovery Techniques

The methods by which heat recovery devices can be categorised may be considered as follows:

Basic methods of total heat exchangersa

9.1 Principle construction of rotary-type

• The rotary-type heat recovery unit is composed of a rotor that has a layered honeycomb structure made of kraft paper, drive motor and housing.

A large quantity of moisture absorbent material (lithium chloride, etc.) is applied onto the rotor, and humidity is transferred. The rotor is rotated eight times a minute by the drive motor.

• The principle of this rotary-type is for example when cooling, the high temperature and high humidity fresh air passes through the rotor, with the heat and humidity being absorbed by the rotor. As the rotor is rotating, it moves into the exhaust air passage, and the heat and humidity is discharged to outdoors because the exhaust is cool and has a low humidity.

The rotor rotates and returns to the fresh air passage to absorb the heat and humidity again.

Rotor rotation direction

When a purge sector is mounted, the introduction of the exhaust air in the rotor to the air on the supply side can be prevented. Vr: Rotor speed, Vs: Air speed in relief section

• Function of purge sector

There are two separation plates (purge sector) in the front and back of the rotor to separate the flow of the air. As one of the plates is slightly shifted, part of the fresh air always flows into the exhaust air passage to prevent the exhaust air and fresh air from mixing. (A balanced pressure difference is required.)

9.2 Comparison of static-type and rotary-type heat recovery units

Item	Static-type		Rotary-type			
Construction/ principle	<conductive transmission-type:<br="">Static-type transmission total here with orthogonally layered honeyor treated paper formed into multip As the supply air and exhaust ai different passages (sequentially passages are completely separat</conductive>	cross-flow> at recovery unit comb shaped le layers. r pass through layered), the air tted.	×	<heat ac<br="" accumulation="" humidity="">type: counterflow> The rotor core is composed of he kraft paper, etc., to which a mois applied (lithium chloride, etc.). T and heat accumulation/humidity heat discharge/humidity discharge exchange is performed by passin intake airs into a honeycomb pas Supply air and exhaust airs flow passage because of the rotary-ty-ty- tary to the sector of the rotary-ty-ty-ty-ty-ty-ty-ty-ty-ty-ty-ty-ty-ty</heat>	cumulation- oneycomb-shaped sture absorbent is This rotor is rotated, accumulation - ge of total heat ng the exhaust and ssage. into the same air ype construction.	
Moving parts	None Fixed core		×	Used (rotor driven with belt by go Rotor core (8RPM)	ear motor)	
Material quality	Treated paper			Treated paper, aluminum plates,	etc.	
Mounting of prefilter	Required (periodic cleaning requ	uired)		Required (periodic cleaning requ	uired)	
Element clogging	 Occurs (state where dirt adheres passage surface. However, this with a vacuum cleaner.) 	s onto element air is easily removed	×	Occurs (Dust is smeared into eleme (The dust adhered onto the core into the air passage by the purge Thus, it cannot be removed easi volume decreases.)	ent air passage filter.) e surface is smeared e sector packing. ly and the air	
Air leakage Gas transmission rate	Approximately 2.5% air leak at s position. Leaks on the air supply side can leaking the loss air volume (appr exhaust side with the fan position Gas transmission (Ammonia hydrogen sul	tandard fan be reduced to 0 by rox. 10%) on the n to the core. : 28%, fide : approx. 6.7%)	×	Purged air volume occurs To prevent leakage of exhaust to t purge air volume (6 to 14%) leak exhaust side. Thus, there are proi sector operation conditions (press speed), and the air volume balance Gas transmission (Ammonia hydrogen sulfic	he air intake side, a is created to the blems in the purge ure difference, the must be balanced. : 45-57%, de : approx. 3.2-4%)	
Bacteria transmission rate	 Low (As air intake/exhaust are set transmission is low.) 	eparate,	×	High (As air intake/exhaust are t transmission is high.)	he same,	
Operation during off-seasons	Bypass circuit required (OK on c intake and exhaust air outlet pas	one side of air ssage)		Bypass circuit required (Require and exhaust air outlet sides) (In theory, operation is possible by but the core will over-absorb, causi	d on both air intake stopping the rotation, ing drainage.)	
Maintenance	Core cleaning: More than once The core surface will clog with cleaning is easy with a vacuur Only the two core air passage cleaned.	e a year lint and dirt, but n cleaner. intakes need to be	×××	Core cleaning: Once every one t Cleaning is difficult as dust is with the packing. Gear motor for rotor drive : Rotor bearing, rotor drive belt :	o two years smeared into core Periodic inspection Periodic inspection	
Life	Core: Semi-permanent (10 years (The static-type does not break.)	s or more))	×××	Core: Semi-permanent (10 years (Periodic replacement is required rotor bearings and core clogging Rotor drive belt : Peri Drive motor, rotor bearing : Peri	s or more) d according to the J.) iodic replacement iodic replacement	
Model system and comparison	 O Available from small to large. O Characteristic design of small and medium models possible. Large models are easy to match to machine room layout. 	Example LU-1605	×	Large type only Small models are difficult to design because of the rotor magnitude.	Example EV-1500	
Standard treatment air volume	40 to 25,000 m ³ /h	8,000 m ³ /h	0	100 to 63,000 m ³ /h	8,000 m³/h	
Enthalpy recovery efficiency		Temperature:77% Enthalpy Heating : 71% Cooling : 66%			74%	
Pressure loss		17 mmAg			18 mmAg	
Installation space $(W \times D \times H)$	Effective for small to medium capacity (Layout is free according to combination.)	600 × 2100 × 2540		Large capacity models are effective	320 × 1700 × 1700	
Measure of useability	● High o Av	erage × Poor				

CHAPTER 4

Characteristics

1. How to Read the LGH Series Lossnay Characteristic Curves

1.1 Obtaining characteristics from static pressure loss

Л

- (1) Static pressure loss from straight pipe duct length (at required air volume)
- (2) Static pressure loss at curved section (at required air volume)
- (3) Static pressure loss of related parts (at required air volume)

2. Obtaining the Static Pressure Loss

2.1 How to read the air volume - static pressure curve

It is important to know the amount of static pressure loss applied onto the Lossnay when using parts such as ducts for the air distribution. If the static pressure increases, the air volume will decrease. The air volume - static pressure curve (Q-H curve) shows this percentage. A static pressure of 19.6 Pa (2 mmH₂O) is applied on to point A, and the air volume is 500 m³/h. The duct resistivity curve shows how the static pressure is applied when a duct is connected to the Lossnay. Thus, the L = 9.97 m duct resistivity curve in the diagram is the curve that shows how the static pressure is applied when a 10 m duct is connected. The intersecting point A with the Lossnay Q-H curve is the operation point.

Duct resistivity curve

The duct resistivity curve shows how much static pressure a duct will apply on the Lossnay, as explained above.

Duct	Static pressure
When duct is long	Increases
If length is the same but the air volume increases	Increases
If the duct diameter is narrow	Increases
If the duct inner surface is rough (such as a spiral)	Increases

In general, the interrelation between the duct and static pressure is as follows:

6 8 10 12 14 16 18

Outdoor air (m/s)

18

16

2

2 4

Outdoor air pressure (mmH2O)

Reference

• The pressure loss caused by the outdoor air is as follows:

Pressure loss caused by outdoor air (Pa)

$$= \frac{r}{2} \times V^2 = \frac{1.2}{2} \times (velocity)^2$$

r: Air weight 1.2 kg/m³

v : Velocity (m/s)

2.2 Calculation of duct pressure loss

When selecting a model that is to be used with a duct, calculate the volumes according to Tables 3, 4, 5 and 6, and then select the unit according to the air volume and static pressure curve.

(1) Calculation of a rectangular pipe

from Tob

Table 3 Conversion table fromrectangular pipe to circular pipe

How to read Table 3

Select the unit as per each duct. In the above example, the \Box 520 rectangular pipe only goes as far as 17. Thus, the long side, short side and converted circular pipe values are all multiplied by 100. The point 560 where the two lines cross is hence the value where the rectangular pipe equates to the circular pipe.

How to read Table 4

The point where the line of the circular duct diameter (leftward slanting line) and of the required air velocity (horizontal line) intersect is the pressure loss per 1 m of duct.

The value of the slanted line to the lower right of the intersecting point is the average velocity.

(Outline of Table 4)

The figure obtained from Table 4 must then be corrected for duct type at various velocities. This can be done using Table 5 below.

Duct inner surface	Example		Average velo	ocity (m/sec)	
Duct inner surface	Example	5	10	15	20
Very rough surface	Concrete finish	1.7	1.8	1.85	1.9
Rough	Mortar finish	1.3	1.35	1.35	1.37
Very smooth	Drawn steel pipe Vinyl pipe	0.92	0.85	0.82	0.8

Table 5 Friction coefficient compensation table

An alternative, more detailed method for determining the pressure loss in duct work is as shown using the following formula:

Circular pipe section pressure loss
$$\lambda$$
 : Friction resistance coefficient (smooth pipe 0.025) $\Delta p = \lambda \cdot \frac{\ell}{d} \cdot \frac{\rho}{2} \cdot v^2$ (Pa)C : Local loss coefficient (refer to Table 6) $\Delta p = C \cdot \frac{\rho}{2} \cdot v^2$ (Pa)d : Duct diameter (m) $\mu = 0.6 \ C \cdot v^2$ v : Wind velocity (m/s)

(3) How to calculate curved sections

Table 6 List of pressure losses in each duct section

No.	Duct section	Outline diagram	Conditions	C value	Length of equivalent circular pipe	No.	Duct section	Outline diagram	Cor	nditions	C value	Length of equivalent circular pipe
1	90° Smooth		R/D = 0.5 = 0.75 = 1.0	0.73 0.38 0.26	43D 23D 15D	12	Transformer	$ \begin{array}{ c c c c } \hline A & 2A & \hline A & A & \hline A & A & A & \hline A & A & A & A & \hline A & A & A & A & A & \hline A & A & A & A & A & A & A & A & A & A &$			0.15	9D
	Elbow	*	= 1.5 = 2.0 W/D R/D	0.17 0.15	10D 9D	13	Abrupt Entrance	↓ → V1			0.50	30D
	Rectangular		0.5 0.5 1.0	1.30 0.47 0.28	79D 29D 17D	14	Abrupt Exit	V1			1.0	60D
2	Radius Elbow	W R	1.5 0.5 1.2 0.75	0.18 0.95 0.33	11D 57D 20D	15	Bellmouth Entrance				0.03	2D
			1-3 1.0 1.5 No. of vanes R/D	0.20 0.13	12D 8D	16	Bellmouth Exit				1.0	60D
	Rectangular		0.5 0.75 1 1.0	0.70 0.16 0.13	42D 10D 8D	17	Re-entrant inlet				0.85	51D
3	Vaned Radius Elbow		1.5 0.5 0.75 1.0 1.5	0.12 0.45 0.12 0.10 0.15	7D 27D 7D 6D 9D	18	Sharp edge round orifice	V1	V1/	V ₂ = 0 0.25 0.50 0.75 1	2.8 2.4 1.9 1.5 1.0	170D 140D 110D 90D 60D
4	90° Miter Elbow			0.87	53D				Los V2	s is for		
5	Rectangular Square Square Elbow			1.25	76D	19	Pipe inlet (with circular hood)		β	20° 40° 60° 90°	0.02 0.03 0.05 0.11	
6	Rectangular Vaned Square Elbow	→ □ +		0.35	21D	20	Pipe inlet (with		ß	20° 40° 50°	0.03	
7	Rectangular Vaned Square Junction		Same loss a	as circula	ar duct		rectangular hood)		Vı	90° 120°	0.12	30D
8	Rectangular Vaned Radius Junction		Velocity is I	based o	n inlet.	21	Abrupt contraction	V1 → V2	• .,	0.25 0.50 0.75	0.45 0.32 0.18	27D 19D 11D
9	45° Smooth Elbow		With or without vanes, rectangular or circular	1/2 time for simil	es value ar 90°				Los V2 V1/	is is for $V_2 = 0$	1.0	60D
10	Expansion		a = 5° 10° 20° 30° 40° Loss is for	0.17 0.28 0.45 0.59 0.73	10D 17D 27D 36D 43D	22	Abrupt expansion	→ V1 → V2	Los V1	0.20 0.40 0.60 0.80 ss is for	0.64 0.36 0.16 0.04	39D 22D 9D 2D
11	Contraction		$nV_1 - hV_2$ a = 30° 45° 60° Loss is for V ₂	0.02 0.04 0.07	1D 2D 4D	23	Suction inlet (punched narrow plate)		Free are ratio	0.2 0.4 0.6 0.8	35 7.6 3.0 1.2	

3. How to Obtain Efficiency from Characteristic Curves

3.1 Commercial-use Lossnay

How to read Commercial-use Lossnay characteristic curve

 Obtaining the efficiency when supply air and exhaust air volumes differ The efficiency obtained from the intake side air value in each characteristic curve can be corrected with the air volume ratio in the chart on the right.

If the intake side and exhaust side duct lengths differ greatly or if a differential air volume is required, obtain the intake side efficiency from the chart on the right.

3.2 Building-use Lossnay

4. Sound

Sound is emitted when any object is excited causing it to vibrate. The object that vibrates is called the sound source, and the energy that is generated at the source is transmitted through the air to the human ear. Humans can hear the sound only when the ear drum vibrates.

4.1 Sound level and auditory perception

Sound level is the sound wave energy that passes through a unit area in a unit time, and is expressed in dB (decibel) units.

The sound heard by the human ear differs according to the strength of the sound and the frequency, and the relation to the pure tone sound is as shown on the right. The vertical line shows the strength of the sound and the horizontal line shows the frequency. For frequencies between 20 Hz to 15,000 Hz which can be felt by the human ear, the strength of sound that can be felt that is equivalent to a 1,000 Hz sound is obtained for each frequency. The point where these points cross is the sound level curve, and a sound pressure level numerical value of 1,000 Hz is expressed. These are called units of phons. For example, the point on the 60 curve is perceived as 60 phons.

• On average, the human senses a sound that is less than 1,000 Hz as rather weak, and a sound between 2,000 to 5,000 Hz as strong.

4.2 How to measure sound levels

A sound level meter (JIS C1502) is used to measure sound levels. This sound level meter has three characteristics (A, B and C characteristics) as shown on the right. These represent various sound wave characteristics.

Generally, the A characteristic, which is the most similar to the human ear, is used.

ISO audio perception curve

4.3 Frequency analysis of sound

It is said that the human ear senses differently according to the frequency. However, the sound generated from a vibration is not limited to one frequency, but instead, various frequencies are generated at differing levels. This is expressed by the NC curve, which is determined according to the difficulty of hearing a conversation.

• Even if the sound is a very low level, it is annoying if a specific frequency is emitted very loudly. These sounds are suppressed to a minimum during product design stages, but, the sound may become very disturbing with resonance of the ceiling, wall, etc.

• Tolerable noise levels and NC values according to room application

Room application	dB	NC value	Room application	dB	NC value
Broadcasting studio	25	15 - 20	Cinema	40	30
Music hall	30	20	Hospital	35	30
Theatre (approx. 500 seats)	35	20 - 25	Library	40	30
Classroom	40	25	Small office	45	30 - 35
Conference room	40	25	Restaurant	50	45
Apartment	40	25 - 30	Gymnasium	55	50
Hotel	40	25 - 30	Large conference room	50	45
Housing (room)	40	25 - 30	Factory	70	50 or more

4.4 Indoor noise

(1) Principle of indoor noise

1) Power levels

The Power level (PWL) of the sound source must be understood when considering noise effects.

The following formula is used to obtain PWL from the measured sound pressure data (values noted in catalog) in an anechoic chamber.

PWL = SPLo + 20 logro + 11 [dB](l)

- PWL : Sound source power level (dB)
- SPLo : Measured sound pressure in anechoic
 - chamber (dB)
 - ro : Measurement distance (m)
- 2) Principal model
 - Consider the room shown in Figs. 1 and 2.
 - Fig. 1 shows an example of the integrated main unit and supply air diffuser (and return grille). This is equivalent to the cassette-type Lossnay.

Fig. 2 shows an example of a separated main unit and supply air diffuser (and return grille). This is equivalent to the ceiling embedded-type Lossnay.

- (a) is the direct sound from the supply air diffuser (return grille) and (b) is the echo sound. (c) (c) to (c)) is the direct sound that is emitted from the main unit and duct and passes through the finished ceiling and leaks. (d) is the echo sound of (c).
- 3) Setting of noise
 - The following formula is used to obtain the noise value at a position in the room.

SPL : Sound pressure level at reception point [dB]

- PWL : Sound source power level [dB]
 - Q : Directivity factor (Refer to Fig. 3)
 - r : Distance from sound source [m]
 - R : Room constant [R = $\overline{\alpha}S/(1 \overline{\alpha})$]
 - $\overline{\alpha}$: Average sound absorption ratio in room (Normally, 0.1 to 0.2)
 - S : Total surface area in room $[m^2]$

Fig. 1

Fig. 3 (Sound source position and directivity factor Q)

	Sound source position	Q
а	Centre of room	1
b	Centre of ceiling	2
С	Edge	4
d	Corner	8

• For the supply air diffuser (and return grille) in Fig. 2, PWL must be corrected for the noise alternation provided by the duct work (TL) such that:

PWL' = PWL - TL

- Item i in formula (II) is the direct sound ((a), (c)), and ii is the echo sound ((b), (d)).
- The number of sound sources in the room (main unit, supply air diffuser, return grille etc.) is obtained by calculating formula (II), and combining the number with formula (III).

SPL = 10 log (10 SPL1/10 + 10 SPL2/10)(III)

• The average sound absorption rate in the room and the ceiling transmission loss differ according to the frequency, so formula (II) is calculated for each frequwncy band, and is combined with formula (III) for an accurate value.

(2) Avoiding noise disturbance from Lossnay unit

- 1) When unit air passage behind ceiling is sound source (Fig. 1 (c), (d), Fig. 2 (c_1) to (c_3) , (d))
 - (A) Avoid the following types of construction when disturbing noise may be emitted from large units. (Refer to Fig. 4)
 - a) Sudden contraction of duct diameter (Ex. $\emptyset 250 \rightarrow \emptyset 150$, $\emptyset 200 \rightarrow \emptyset 100$)
 - b) Sudden curves in aluminum flexible ducts, etc. (Especially right after unit outlet)
 - c) Opening in ceiling plates
 - d) Suspension on weak material
 - (B) The following countermeasures should be taken. (Refer to Fig. 5)
 - a) Use ceiling material with high soundproofing properties (high transmission loss). (Care is required for low frequency components as the difference in material is great).
 - b) Addition of soundproofing material to areas below sound source.

(The entire surface must be covered when using soundproofing sheets. Note, that in some cases, covering of the area around the unit may not be possible due to the heat generated from the unit.)

Transmission loss in ceiling material (dB) Example

N thi	Material() indicates ckness (mm)	Plaster board (7)	Plaster board (9)	Lauan plywood (12)
	Average	20	22	23
(z	125	10	12	20
ы Т	250	11	15	21
ban	500	19	21	23
ncy	1,000	26	28	26
ənbə	2,000	34	35	24
Ē	4,000	42	39	

Fig. 4

Fig. 5

- 2) When supply air diffuser (and return grille) is sound source part 1
 - (A) If the main unit is separated from the supply air diffuser (and return grille) as shown in Fig. 6, the use of a silencer box a), silence duct b) or silence grille c) is recommended.
 - (B) If a draft sound is being emitted from the supply air diffuser (and return grille), branch the flow as shown in Fig. 7 a), lower the flow velocity with a grille, and add a silencer duct to section b).

(If the length is the same, a silencer duct with the small diameter is more effective.)

- 3) When supply air diffuser (and return grille) is sound source part 2
 - (A) If the main unit and supply air diffuser (and return grille) are integrated as shown in Fig. 8, or if the measures taken in 2) a) and b) are inadequate, the interior material in the room can be changed to that having a high sound absorbency as shown in Fig. 8 a).

This is not, however, very effective towards direct sounds.

(B) Installing the sound source in the corner of the room as shown in Fig. 8 b) is effective towards the center of the room, but will be inadequate towards people in the corner of the room. Fig. 6

Fig. 7

Fig. 8

5. NC Curves (LGH-RX3 Series)

• Ceiling embedded-type

LGH-15RX₃

LGH-20RX3

LGH-35RX₃

LGH-50RX₃

LGH-80RX3

LGH-100RX3

LGH-150RX₃

LGH-200RX3

Lossnay Pack-type for Buildings

LP-200B

LP-500B

Background noise : 51 dB (A range) Measurement site : Fan test operation site
Measurement position : 1.5 m from the front center of the
unit 1 m above the floor
Operation conditions : Lossnay ventilation
80
85
83
0 /5 NC-70
2 65 NC-60
ğ 35
20
15
Overall 62.5 125 250 500 1000 2000 4000 8000
Octave band frequency near center (Hz)
1

LP-1000B

Background noise Measurement site	: 51 dB (A range) : Fan test operation site
Measurement position	on 15 m from the front center of the
Moded of them pooling	
	unit, I m above the floor
Operation conditions	: Lossnay ventilation
⁹⁰	
85	
<u> </u>	
뜅 75	
<u> </u>	
<u>e</u> 65	
ž 60 —	
<i>6</i> 55	
<u>5</u> 45	
⁰ 40	
0 au	
	NC-30
20 ta	
8 ²³	NC-20
20	
15	NC-10
	62.5 125 250 500 1000 2000 4000 8000
Overall	Octave band frequency near center (Hz)

LP-350B

LP-750B

6. List of Models

6.1 Model specifications

	L L	0 1 1	Air	volume (m ³	(h)	,	Connection duct diameter		Applicati	uo	Applicable	
			Extra- high	High	Low		or embedded dimensions	Installa- tion site	Building example	Application site example	people	
		LGH-15RX ₃	150/150	150/150	120/110	Single-phase 220 to 240 V / 50 Hz 200V / 60Hz	ø100	u			5 - 8	
		LGH-25RX ₃	250/250	250/250	180/160	Same as above	ø150	atio			8 - 13	
</td <td></td> <td>LGH-35RX₃</td> <td>350/350</td> <td>350/350</td> <td>230/210</td> <td>Same as above</td> <td>ø150</td> <td>llstall</td> <td>Government agency office</td> <td>Office</td> <td>11 - 18</td> <td></td>		LGH-35RX ₃	350/350	350/350	230/210	Same as above	ø150	llstall	Government agency office	Office	11 - 18	
veus		LGH-50RX ₃	500/500	500/500	350/300	Same as above	ø200	sni b	building, tenant	conference room,	16 - 25	
soj	embedded-type	LGH-80RX ₃	800/800	800/800	670/660	Same as above	ø250	esi	building, hospital,	salon, board	26 - 40	_
istrial <	:	LGH-100RX3 -50 / 60	1,000/1,000	1,000/1,000	870/720	Same as above	ø250	əqeib t	scnool, weltare facility, shop, hotel	room, etc.	33 - 50	
snpu		LGH-150RX ₃	1,500/1,500	1,500/1,500	1,340/1,320	Same as above	ø350	uəpı			50 - 75	
l		LGH-200RX3 -50 / 60	2,000/2,000	2,000/2,000	1,740/1,440	Same as above	ø350	uədəpi			66 - 100	
	Ceiling exposed- type	LGH-50E5	I	490/480	300/260	Single-phase 50/60Hz	ø200 or 210 × 590	ul	School, shop, welfare facility, hall	Office, conference room, etc.	16 - 25	
		LP-200B	t.	,000 - 2,900		Three-phase 50 or 60 Hz	250 imes 350			Office, conference room, hall	40 - 145	
		LP-350B	Z	,000 - 5,000		Same as above	325 imes 400		Government agency, office	Office, conference room, hall, library	80 - 250	
	Lossnay Pack	LP-500B	4	,000 - 7,000		Same as above	405×500		building, hospital, welfare facility,	Office, hall, library, pachinko parlour	160 - 350	
<\subsection		LP-750B	4	000 - 10,000		Same as above	$\begin{array}{c} 405 \times 540 \\ 1200 \times 540 \end{array}$	uc	nall, shop, school, hotel	Office, theatre, library, pachinko parlour	160 - 500	
0ק> 6ט		LP-1000B	Û.	000 - 13,000	0	Same as above	$\begin{array}{c} 405 \times 540 \\ 1200 \times 540 \end{array}$	oitellete		Office, theatre	240 - 650	
liblin8	Vertical-	LUT- 2302 - 2308	Ň	000 - 28,000		I		sni moo	Government		185 - 920	
	type Lossnay	LUT- 3002 - 3008	Ϋ́	000 - 36,000	0	I	I	hine ro	agency, office building, hospital,	Offlice, conference room, hall library	240 - 1200	
-	Unit	LU-80,160,500		300 - 7,000				овМ	welfare facility,	pachinko parlour,	30 - 250	
	tal-type	LU-1602 - 1606	1,	200 - 13,200	(hotel	theatre	130 - 480	
	;	LU-502 - 505	4,	000 - 35,000	(400 - 1250	
		LUP-80, 160, 500		500 - 6,000		I	I		Hotol accorded		I	
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Moisture resistant	LU- 1602 - 1606	+	600 - 14,400	0	I	I		רוטוניי שני ושטוני, welfare facility, sports facility.	Large bath, heated pool,	I	
רי. ארי ועו		LUP- 502 - 505	4	000 - 35,000			I		factory	drying equipment	I	

		Colour		Outside	Ø		Heat recovery	unit		Hur	nidifier	
Model	Colour Mur symbol	isell Mitsub colour	ishi No.	aterial	Paint specificatic	Material	Dimensions without frame	Weight with frame/unit	۵'ty	Humidifying D method	limensions	Q'ty
LGH-15RX ₃			Molten (steel ple	galvanized ate		Incombustible treated paper	e 145 × 145 - 1.7 k	× 546 g	-			
LGH-25RX ₃	I		Molten (steel pla	galvanized ate		Incombustible treated paper	e 171 × 171 - 1.2 k	× 322 g	N		I	
LGH-35RX ₃			Molten (steel pla	galvanized ate		Incombustible treated paper	e 198 × 198 2.0 k	× 387 g	~		I	I
LGH-50RX ₃			Molten (steel pla	galvanized ate		Incombustible treated paper	e 198 × 198 2.3 k	× 458 g	N		I	I
LGH-80RX ₃			Molten (steel pla	galvanized ate		Incombustible treated paper	e 267 × 267 3.8 k	× 440 g	N		I	I
LGH-100RX ₃			Molten (steel pla	galvanized ate		Incombustible treated paper	e 267 × 267 4.8 k	× 553 g	2		I	I
LGH-150RX ₃		I	Molten (steel pla	galvanized ate	I	Incombustible treated paper	e 267 × 267 3.8 ky	× 440 g	4		I	
LGH-200RX ₃	I	I	Molten (steel pla	galvanized ate	I	Incombustible treated paper	e 267 × 267 4.8 k	× 553 g	4		I	I
LGH-50E5	5Y 8.5/1	У-62	2 Steel pl	ate	Melamine baked finis	Incombustible h treated paper	e 178 × 198 > 8.0 k	× 1,129 g	-		I	
	Bla	des		Ē	lter		Insulation material		Produc	ct usage condi	itions	
Model	Material	Shape, diameter	Material	Dimensi	ons Q'	ty Filtering efficiency	Material	Ambien	t ure c	Exhaust air conditions (RA)	Supply conditions	air s (OA)
LGH-15RX ₃ -E	ABS resin	Centrifugal fan ø 180	Prefilter NP/400	552 × 125	× 15	Gravitational method 82%	Self-extinguishing urethane foam	-10°C to +4 RH80% or I	0°C	-10°C to +40°C RH80% or less	-10(-15)°C to RH80% or le	o +40°C ∋ss
LGH-25RX ₃ -E	ABS resin	Centrifugal fan ø 180	Prefilter NP/400	658 × 151	× 15	Gravitational method 82%	Self-extinguishing urethane foam	-10°C to +4 RH80% or I	0°C less	-10°C to +40°C RH80% or less	-10(-15)°C to RH80% or le	o +40°C ∋ss
LGH-35RX ₃ -E	ABS resin	Centrifugal fan ø220	Prefilter NP/400	789 × 175	× 15	Gravitational method 82%	Self-extinguishing urethane foam	-10°C to +4 RH80% or I	0°C .	-10°C to +40°C RH80% or less	-10(-15)°C to RH80% or le	o +40°C ∋ss
LGH-50RX ₃ -E	ABS resin	Centrifugal fan ø220	Prefilter NP/400	931 × 178	× 15	Gravitational method 82%	Self-extinguishing urethane foam	-10°C to +4 RH80% or I	0°C less	-10°C to +40°C RH80% or less	-10(-15)°C to RH80% or le	o +40°C ∋ss
LGH-80RX ₃ -E	Steel plate	Centrifugal fan ø245	Prefilter NP/400	895 × 238	× 15	Gravitational method 82%	Self-extinguishing urethane foam	-10°C to +4 RH80% or I	0°C less	-10°C to +40°C RH80% or less	-10(-15)°C to RH80% or le	o +40°C ∋ss
LGH-100RX3-E	Steel plate	Centrifugal fan ø245	Prefilter NP/400	1,122 × 236	3 × 15 2	Gravitational method 82%	Self-extinguishing urethane foam	-10°C to +4 RH80% or I	0°C . less	-10°C to +40°C RH80% or less	-10(-15)°C to RH80% or le	o +40°C ∋ss
LGH-150RX3-E	Steel plate	Centrifugal fan ø245	Prefilter NP/400	895 × 238	× 15	Gravitational method 82%	Self-extinguishing urethane foam	-10°C to +4 RH80% or I	0°C . ess	-10°C to +40°C RH80% or less	-10(-15)°C to RH80% or le	o +40°C ∋ss
LGH-200RX ₃ -E	Steel plate	Centrifugal fan ø245	Prefilter NP/400	1,122×236	3 × 15	Gravitational method 82%	Self-extinguishing urethane foam	-10°C to +4 RH80% or I	0°C . ess	-10°C to +40°C RH80% or less	-10(-15)°C to RH80% or le	o +40°C ∋ss
LGH-50E5	ABS resin	Centrifugal fan	Prefilter	(Intake side) 1,129 × 200 × /Exhaust side)	أ ت 1	Gravitational	Self-extinguishing	-10°C to +4	0°C	-10°C to +40°C	-10(-15)°C to	0 +40°C
)))]		ø200	NP/400	(Exnaust side) $376 \times 143 \times 14$		method 82%	urethane toam	RH80% or I	ess	RH80% or less	RH80% or le	SSS

6.2 List of material colours for Industrial Lossnay

		Colou	L			Outs	ide					Heat recovery unit		
Model	Colour N symk	Aunsell Jool	Mitsubish colour No.		2	1aterial	Paint specificat	t tions		Material		Dimensions without frame	Weight with frame/unit	Q*ty
LP-200B	5Υ 6.	5/1	N-E6	5 T	teel plate	Thickness: 1	.6 t Polyester p	owder	Incombu	istible treat	ed pap	er 🗌 550 × 487	22 kg	2
LP-350B	5Υ 6.	5/1	N-E6	St	teel plate	Thickness: 1	.6 t Polyester p	owder	Incombu	istible treat	ed pap	er 🛛 🗆 550 × 487	22 kg	3
LP-500B	5Υ 6.	5/1	N-E6	St	teel plate	Thickness: 1	.6 t Polyester p	owder	Incombu	istible treate	ed pap	er 🛛 🗆 550 × 487	22 kg	4
LP-750B	5Υ 6.	5/1	N-E6	St	teel plate	Thickness: 1	.6 t Polyester p	owder	Incombu	istible treat	ed pap	er 🛛 🗆 550 × 487	22 kg	6
LP-1000B	5Υ 6.	5/1	N-E6	ß	teel plate	Thickness: 1	.6 t Polyester p	owder	Incombu	istible treate	ed pap	er 🛛 🗆 550 × 487	22 kg	8
		Air-	supply fan				Ē	lter				Insulation material	Product usage condition	suo
Model	Blade diameter	Suction	method	Drive lethod	Blade shape	Material	Dimensions	Q'ty	Filterin	ig efficienc	ž	Material	(Ambient temperature, air, supply air conditior	exhaust is)
LP-200B	#1 1/2	Single-sid	le suction	Belt 0	entrifugal fan	Prefilter NP/40	$0 505 \times 531 \times 20$	4	Gravitatio	nal method 85	3%	Self-extinguishing urethane foam	-10°C to +40°C RH80%	6 or less
LP-350B	#2	Single-sid	le suction	Belt 0	entrifugal fan	Prefilter NP/40	$0 505 \times 531 \times 20$	9	Gravitatio	nal method 85	3%	Self-extinguishing urethane foam	-10°C to +40°C RH80%	6 or less
LP-500B	#2 1/2	Single-sid	le suction	Belt _C	entrifugal fan	Prefilter NP/40	$0 505 \times 531 \times 20$	æ	Gravitatio	nal method 85	2%	Self-extinguishing urethane foam	-10°C to +40°C RH80%	6 or less
LP-750B	#2	Double-sic	de suction	Belt _C	entrifugal fan	Prefilter NP/40	$0 505 \times 531 \times 20$	12	Gravitatio	nal method 85	2%	Self-extinguishing urethane foam	-10°C to +40°C RH80%	6 or less
LP-1000B	#2	Double-sic	de suction	Belt 0	entrifugal fan	Prefilter NP/40	$0 505 \times 531 \times 20$	16	Gravitatio	nal method 85	2%	Self-extinguishing urethane foam	-10°C to +40°C RH80%	6 or less
	Color	ır		Out	side		He	at reco	very unit			Insulation material	Product usage condition	suo
Model	olour Munsell symbol	Mitsubishi colour No.	Mate	rial	Paint s	pecifications	Material	with	mensions nout frame	Weight with frame/unit	Q'ty	Material	(Ambient temperature, air, supply air conditior	exhaust is)
LUT-2302	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.6	t Poly€	ster powder	ncombustible treated ps	aper 2	399.5 × 742	19.2 kg	6 S	elf-extinguishing urethane foam	-10°C to +50°C RH80%	6 or less
LUT-2303	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.6	t Poly€	ster powder	ncombustible treated pe	aper 2	:99.5 × 742	19.2 kg	0 0	elf-extinguishing urethane foam	-10°C to +50°C RH80%	6 or less
LUT-3002	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.6	t Polye	ster powder	ncombustible treated pe	aper 2	:99.5 × 742	19.2 kg	8 8	elf-extinguishing urethane foam	-10°C to +50°C RH80%	6 or less
LUT-3003	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.6	t Polye	ster powder	ncombustible treated ps	aper 2	:99.5 × 742	19.2 kg	12 S	elf-extinguishing urethane foam	-10°C to +50°C RH80%	6 or less
LU-80	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.2	t Poly	ster powder	incombustible treated pa	aper 🗆	300 imes 488	8 kg	2 S	elf-extinguishing urethane foam	-10°C to +50°C RH80%	6 or less
LU-160	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.2	t Polyé	ster powder	ncombustible treated ps	aper	300×488	8 kg	4 S	elf-extinguishing urethane foam	-10°C to +50°C RH809	6 or less
LU-500	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.6	t Polyé	ster powder	ncombustible treated ps	aper 🗆	550×487	22 kg	4 S	elf-extinguishing urethane foam	-10°C to +50°C RH809	6 or less
LUP-80	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.2	t Polyé	ster powder	Polypropylene resin		300×489	21 kg	2	1	-10°C to +80°C RH	100%
LUP-160	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.2	t Poly∈	ester powder	Polypropylene resin		300 imes 489	21 kg	4	I	-10°C to +80°C RH	100%
LUP-500	5Y 6.5/1	N-E6	Steel plate Thi	ckness: 1.6	t Poly	ester powder	Polypropylene resin		550 imes 495	32 kg	4	I	-10°C to +80°C RH	100%
LSM-150 7.	5BG 6/1.5	B-8001	Steel plate Thi	ckness: 1.2	t Melamir	ne baked finish	Aluminum		300 × 481.8	25 kg	2	I	-10°C to +160°C RH	100%

6.3 List of material colours for Building Lossnay

6.4 List of industrial/business Lossnay accessories

Model	Accessories	Duct packaging site
LGH-15RX3		
LGH-25RX₃	 Duct connection flanges×4 Mounting screws×34 	EA RA * Top view. There is a space
LGH-35RX₃	Washers	OA SA side and the OA side.
LGH-50RX ₃	Lossnay connection cable × 1	
LGH-80RX₃	• IB×1 • IM×1	2 are inserted on * Top view. top of each other at the SA and EA $\rightarrow \square$
LGH-100RX3		openings, in the opposite direction.
LGH-150RX₃ LGH-200RX₃	 Mounting screws	* Top view. One is inserted at each opening in the opposite direction.
LGH-50E₅	Round duct connection flange: 2, slave unit fixing plate: 1	
LP-200B	Touch-up paint	
LP-350B	Touch-up paint	
LP-500B	Touch-up paint	
LP-750B	Touch-up paint, M6 nut: 6, M6 washer: 6	
LP-1000B	Touch-up paint, M6 nut: 6, M6 washer: 6	
LUT-2302, 2303	Upper connection fitting: 2, lower connection fitting: 2, M8 screw: 8, M10 screw: 4, M10 washer: 4, packing: 3	
LUT-3002, 3003	Upper connection fitting: 2, lower connection fitting: 2, M8 screw: 8, M10 screw: 4, M10 washer: 4, packing: 3	

CHAPTER 5

System Design Recommendations

		Main unit installation conditions	Outdoor air and exhaust air conditions			
	Commercial-use Lossnay	-10°C to +40°C, RH80% or less	-10°C to + 40°C, RH80% or less.			
Lossnay	LP model Lossnays	-10°C to +40°C, RH80% or less	Same as left The room air temperature/humidity is controlled by separate devices.			
sility	LU, LUT model Lossnays	-10°C to +50°C, RH80% or less	Same as left			
Fac	LUP model Lossnay	-10°C to +80°C, RH100%	Same as left			

1. Lossnay Usage Conditions

In some cases special attention needs to be paid to extreme operating conditions. These are described as below:

1.1 Use in cold climates (outdoor temperature: -5°C or less)

Plot the Lossnay intake air conditions A and B on a psychrometric chart as shown on the right. If the high temperature side air B intersects the saturation curve such as at C, moisture condensation or frosting will occur on the Lossnay. In this case, the low temperature side air A should be preheated to the temperature indicated by point A' so that point C shifts to the point C'.

1.2 Use in high humidity conditions (Relative humidity: 80% or more)

When using the system in high humidity conditions such as heated pools, bathrooms, mushroom cultivation houses, etc., moisture will condense inside the Core, and drainage will occur. In these cases, the general purpose Lossnay that uses treated paper cannot be used. Instead the moisture resistant Lossnay must be used.

The following moisture resistant Lossnay models are available. The usage conditions differ so select the model according to the application.

• Total moisture resistant-type (Relative humidity for both installation site and supply/exhaust conditions can be 100%) LUP series (sensible heat exchange-type with independent Lossnay Core)

1.3 Use in other special conditions

- The Lossnay cannot be used where toxic gases and corrosive element's such as acids, alkalis, organic solvents, oil mist or paints exist.
- Use where heat is recovered from odor-laiden air and supplied to another place (area) is not possible.
- Avoid use where salt or hot water damage may occur.

2. Noise Value of Lossnay with Built-in Fans

The noise level specified for Lossnay units is as that measured in an anechoic chamber. The sound level may increase by 8 to 11 dB according to the installation construction material, and room contents.

When using the Lossnay in a quiet room, it is recommended that measures such as installing a muffling duct, optional silencer intake/exhaust grill (PZ-FG type)* or silencer box (PZ-SB type)* be carried out.

* Please consult with nearest Lossnay supplier about availability of these parts.

3. Attachment of Air Filter

An air filter must be mounted to the air inlets (both intake and exhaust) of the Lossnay to clean the air and to prevent the Core from clogging. Always mount this filter, and periodically service it.

4. Duct Construction

- Always treat the two ducts on the outdoor side (outdoor air intake and exhaust outlet) with insulation to prevent frosting or condensition.
- The outdoor duct gradient must be 1/30 or more (to wall side) to prevent rain water from infiltrating the system.
- Do not use the standard vent caps or round hoods where they may come into direct contact with rain water. (Instead, use of a deep hood is recommended.)

5. By-pass Ventilation

Do not operate with "By-pass ventilation" when heating during winter. Frost or condensation may generate on the main unit and cause discolouring of the ceiling, etc.

6. Transmission Rate of Various Gases and Related Maximum Workplace Concentration

Measurement conditions	Gas	Air volume ratio Qsa/Qra	Exhaust air concentration CRA (ppm)	Supply air concentration CsA (ppm)	Transmission rate (%)	Max. workplace concentrations (ppm)
Measurement method	Hydrogen fluoride	1.0	36	<0.5	- 0	0.6
Chemical analysis	Hydrogen chloride	1.0	42	<0.5	- 0	5
with colorimetric	Nitric acid	1.0	20	<0.5	- 0	10
H ₂ SO ₄ , HCHO	Sulfulic acid	1.0	2.6 mg/m ³	- 0 mg/m ³	- 0	0.25
Ultrasonic method	Trichlene	1.0	85	2.5	2.9	200
with gas	Acetone	1.0	5	0.13	2.5	1,000
concentration device	Xylene	1.0	110	2.5	2.3	150
101 00, 36	Isopropyl alcohol	1.0	2,000	50	2.5	400
 Infrared method with gas 	Methanol	1.0	41	1.0	2.4	200
concentration	Ethanol	1.0	35	1.0	2.9	1,000
device for CO₂Gas chromatography	Ethyl acetate alcohol	1.0	25	0.55	2.2	400
for others	Ammonia	1.0	70	2	2.9	50
The fans are	Hydrogen sulfide	1.0	15	0.44	2.9	10
supply/exhaust	Carbon monoxide	1.0	71.2	0.7	1.0	
suction positions of	Carbon dioxide	1.0	44,500	1,400	1.8	
the element	Smoke	1.0	_	_	1 - 2	
Measurement	Formaldehyde	1.0	0.5	0.01	2	0.08
27°C, 65% RH	Sulfur hexaflouride	1.0	27.1	0.56	2.1	
* OA density for	Skatole	1.0	27.1	0.56	2.0	
CO ₂ is 600 ppm.	Indole	1.0	27.1	0.56	2.0	
	Toluene	1.0	6.1	0.14	2.3	

The above does not apply to the moisture resistant total heat recovery unit.

7. Solubility of Odors and Toxic Gases, etc., in Water and Effect on Lossnay Core

Main generation	Gas name	Molecular Gas formula vapour	Non-toxic/ toxic/	Sulu in w	bility vater	Max. workplace	Useability of Lossnav	
site		mist	odor		mℓ/mℓ	g/100g	concentration	···-,
	Sulfuric acid	H2SO4	Mist	Found		2,380	0.25	×
	Nitric acid	HNO3	Mist	Found		180	10	×
	Phosphoric acid	H3PO4	Mist	Found		41	0.1	×
	Acetic acid	CH₃COOH	Mist	Bad odor		2,115	25	×
	Hydrogen chloride	HCI	Gas	Found	427	58	5	×
Chemical	Hydrogen fluoride	HF	Gas	Found		90	0.6	×
plantor	Sulfur dioxide	SO ₂	Gas	Found	32.8		0.25	\bigtriangleup
laboratory	Hydrogen sulfide	H ₂ S	Gas	Found	2.3		10	\triangle
	Ammonia	NНз	Gas	Bad odor	635	40	50	×
	Phosphine	PH₃	Gas	Found	0.26		0.1	0
	Methanol	CH₃OH	Vapor	Found	Soluble		200	Δ
	Ethanol	CH₃CH₂OH	Vapor	Found	Soluble		1,000	Δ
	Ketone		Vapor	Found	Soluble		1,000	Δ
	Skatole	C9H9N	Gas	Bad odor	Minute			0
Toilet	Indole	C9H7N	Gas	Bad odor	Minute			0
Others	Ammonia	NH3	Gas	Bad odor	635	40	50	×
	Nitric monoxide	NO			0.0043		50	0
	Ozone	Oз				0.00139	0.1	0
	Methane	CH4			0.0301			0
	Chlorine	Cl2			Minute		0.5	0
	Air	Mixed gases	Gas	None	0.0167			0
A :	Oxygen	O2	Gas	None	0.0283			0
(reference)	Nitrogen	N2	Gas	None	0.0143			0
	Carbon monoxide	CO	Gas	Found	0.0214			0
	Carbon dioxide	CO ₂	Gas	None	0.759			0

Note: 1. Water soluble gases and mists cannot be used because the amount that is transmitted with the water is too great.

2. Acidic gases and mists cannot be used because these will accumulate in the Core and cause damage.

3. The above does not apply to the moisture resistant total heat recovery unit.

8. Positioning of the Supply/Exhaust Fans and the Air Transmission Rate (excluding moisture resistant total heat recovery units)

The following four methods can be used for when setting the Lossnay supply and exhaust fans around the Lossnay Core. When using the LU and LUT models, methods a or b should be used in respect of both the Lossnay Core air leakage and effective air ventilation. Use method c if air leakage to the RA or SA sides is not allowed such as in hospital air conditioning, or transmission of the fan noise into the room must be suppressed by putting the Lossnay Core between the supply/exhaust fans and room, and if a certain degree of air leakage is allowed between OA to EA.

If the static pressure difference between SA and RA and between EA and OA is 50mmAq, the air leakage rate will be 2.5%, and 3.4%. This value is of no problem for most standard uses.

c. Installing the supply fan (OA-SA) for force feed and the exhaust fan (RA-EA) for suction feed

In this case, the positive/negative relation of the static pressure will be the reverse of that in system d, and the air leakage outside the room (leakage from OA to EA) will be the same as system d. Thus, the effective volume of ventilating air will be reduced by that rate. b. Installing the supply fan (OA-SA) and exhaust fan (RA-EA) for forced supply to the Lossnay Core

The air leakage rate is the same as in system a.

d. Installing the supply fan (OA-SA) for suction feed and the exhaust fan (RA-EA) for force feed

In this case, the intake side pressure (OA-SA) will be negative, and the exhaust side pressure (RA-EA) will be positive, so the amount of air leakage to the intake side will be the greatest. If the static pressure difference between OA and RA is 50 mmAq, the air leakage rate will be 10.5%, and 13.0%.

This system can be used when an air leakage of 10% to the intake side (OA-SA) is permitted, but should be avoided in all other cases.

9. Combined Operation with other Air Conditioners

Connecting the Lossnay can configure the following system.

10. Automatic Ventilation Switching

Effect of Automatic Ventilation Mode

The automatic damper mode automatically provides the correct ventilation for the conditions in the room. It eliminates the need for troublesome switch operations when setting the Lossnay ventilator to "By-pass" ventilation. The following shows the effect "By-pass" ventilation will have under various conditions.

(1) Reduces cooling load

If the air outside is cooler than the air inside the building during the cooling season (such as early morning or at night), "By-pass" ventilation will draw in the cooler outside air and reduce the cooling load on the system.

(2) Cooling using outdoor air

During cooler seasons (such as between spring and summer or between summer and fall), if the people in a room cause the temperature of the room to rise, "By-pass" ventilation draw in the cool outside air and use it as is to cool the room.

(3) Night purge

"By-pass" ventilation can be used to release hot air from inside the building that has accumulated in buildings a business district during the hot summer season.

(4) Office equipment room cooling

During cold season, outdoor air can be drawn in and used as is to cool rooms where the temperature has risen due to the use of office equipment.

(Only when interlocked with City Multi and Mr. Slim indoor unit)

11. Vertical Installation of LGH Series

Installation of ceiling embedded-type industrial Lossnay

11.1 Top/bottom reverse installation

All LGH-RX3 models can be installed in reverse.

11.2 Vertical installation

Vertical installation is possible, but the installation pattern is limited for some models. Refer to the following table for the installation patterns.

(Precautions)

- When constructing for vertical installation, make sure that rain water will not enter the Lossnay unit from outdoors.
- Always transport the unit in the specified state. Vertical installation applies only to after installation, and does not apply to transportation.

(The motor may be damaged if the unit is transported vertically.)

11.3 Slanted installation

Slanted installation is not possible.

Special note

The LGH-RX₃ model was conventionally designed for being embedded in the ceiling. If possible, vertical installation should be avoided in regard to construction and maintenance.

12. Installation of Supplementary Fan Devices After Lossnay Unit

On occasions it may be necessary to install additional fans in the ductwork following the LGH type Lossnay. This is because of the inclusion of extra components such as control dampers, high-efficiency filters, sound attenuators, etc. which create a significant extra static pressure to the airflow. An example of such an installation is as shown below.

For such an installation care should be taken to avoid undue stress on the fan motors. Referring to the diagrams below, so long as $Q_1' \ge Q_2$, there is no adverse effect on the motors. This is generally such in the majority of cases.

Q-H for Lossnay with extra fan

CHAPTER 6

Examples of Lossnay Applications
Lossnay ventilation systems are proposed for eight types of applications in this chapter. These systems are planned for Japanese use, and actual systems will differ according to each country. These should be used only as reference.

1. Large Office Building

1.1 System plan points

Conventional central systems in large buildings, run in floor and building ducts, have generally been preferred to individual room units. Thus, air conditioning and ventilation after working hours was not possible.

In this plan, an independent dispersed ventilation method has been applied to resolve this problem. Such a system's main advantage is that it allows 24-hour operation.

A package-type air conditioning unit is installed in the ceiling, and ventilation is performed with the ceiling-embedded-type Lossnay. Ventilation in the toilet, kitchenette and lift halls, etc., is performed with a straight centrifugal fan.

Setting outline

- Building form : Basement floor SRC (Slab Reinforced Concrete), 8 floors above ground S construction Total floor space 30,350 m²
- Basement : Employee cafeteria
- Ground floor : Lobby, conference room
- 2 to 7th floor : Offices, salons, board room
- Air conditioning : Package air conditioning
- Ventilation : Ceiling embedded-type Lossnay, straight centrifugal fan

1.2 Current topics

- (1) Operation system that answers individual needs is required.
 - Free independent operation system
 - Simple control
- (2) Effective use of floor space (elimination of machine room)
- (3) Application to Building Management LawsEffective humidification
 - Elimination of indoor dust
- (4) Energy conservation

1.3 Proposed details

(1) Air conditioning

- In general offices, the duct method will be applied with several ceiling-embedded multiple cooling heat pump packages in each zone to allow total zone operation.
- Board rooms, conference rooms and salons will be air conditioned with a ceiling embedded-type or cassette-type multiple cooling heat pump package in each room.

Installation state of office system air conditioning system – The air supplied from the Lossnay is introduced into the intake side of the air conditioner, and the room stale air is directly removed from the inside of the ceiling.

(2) Ventilation

- For general offices, a ceiling embedded-type Lossnay will be installed in the ceiling. The inside of the ceiling will be used as a return chamber for exhaust, and the air from the Lossnay will be supplied to the air-conditioning return duct and mixed with the air in the air conditioning passage. (Exhaust air is taken in from the entire area, and supply air is introduced into the air conditioner to increase the ventilation effectiveness for large rooms.)
- For board rooms, conference rooms and salons, a ceiling embedded-type Lossnay will be installed in the ceiling. The stale air will be duct exhausted from the discharge grille installed in the centre of the ceiling. The supply air will be discharged into the ceiling, where after mixing with the return air from the air conditioner it is supplied to the air conditioner.
- The air in the toilet, kitchenette, and lift hall, etc., will be exhausted with a straight centrifugal fan in each room. The OA supply for this section will use the air supplied from the Lossnay. (The OA volume will be obtained by setting the Lossnay supply fan in the general office to the extra-high notch.)

Installation state of air conditioning system for board rooms, conference rooms, salons - the air supplied from the Lossnay is blown into the ceiling, and the stale air is removed from the discharge grille.

• A gallery will be constructed on the outer wall for the outer wall exhaust air outlets to allow for blending in with the exterior.

(3) Humidification

If the load fluctuation of the required humidification amount is proportional to the ventilation volume, it is ideal to combine the humidifier installation with the ventilation system. For this application, the humidifier is installed on with the air supply side of the Lossnay.

(4) Conformation to Building Laws

The most important consideration here is humidification and dust removal; in these terms, it is recommended that a humidifier is added to the air conditioning system for the office system to allow adequate humidification.

Installation of a filter on each air circulation system in the room is effective for dust removal, but if the outdoor air inlet is near the dust source, such as a road, a filter should also be installed on the ventilation system.

1.4 Effect

- (1) Air conditioning and ventilation needs can be met on an individual basis.
- (2) Operation is possible with a 24-hour system.
- Operation is simple with the switches being in the room. (A controller is not required.) (3)
- (4) Floor space is saved and thus the floor can be used to the maximum.
- (5) Energy is conserved with the independent heat recovery.
- Fresh air air-conditioning is possible with the independent system. (6)

2. Medium Size Office Building

2.1 System plan point

In recent building air conditioning systems, demands for a consistent rationalization from design through operation and control aspects are being made to meet diversified building needs.

In the entire air conditioning facility, either the cooling/heating source equipment or specific air conditioning equipment is considered as being only one element. Thus, it is important to design this element so that it covers the user's needs while providing total amenity.

This air conditioning system plan is for a so-called company building that is largely divided into the general office section (hereinafter referred to as general floors) and special room sections including board rooms and conference rooms (hereinafter referred to as special floors). Furthermore, Building Management Laws are applied to the building due to the scale.

Setting outline

- Building area : 862.2 m²
- Total floor area : 7,093 m²
- No. of floors
- : Basement, above ground 8, penthouse 1 • Application per floor : Basement Parking area
 - Ground floor Large hall
 - Offices 1 to 5
 - 6 to 7 Special rooms

2.2 Current topics

For general office buildings of the past, centralised air conditioning methods allowing the total centralised control and systematization of the entire building (or divided into floor systems) were favoured due mainly to facility control, uniformity of operation hours, maintenance efficiency and building usage. However, when additional work was required to be done on these systems problems occurred.

- A comparison of the following items in each system is shown in Table 1.
- Energy conservation (air conditioning power)
- Space saving (area required for air conditioning facilities)
- Flexibility (zoning and refurbishing)

$\left \right $	Air conditioning	Air conditioning power (kW)			Required area (m ²)			m²)	Sleeve size of beam × 70	Zanian Ref	Refur-	Cleanliness lefur- (Building	Naiss
	system	Heat source	Load	Total	Shaft	Machine room	Roof	Total	Q'ty (Per floor)	Zoning	bishing	Management Law)	Noise
A	Air-cooling heat pump chiller + Air handling unit on each floor + Floor-type fan coil unit (perimeter)	317	105	422	80	513	140	733	ø100 × 162	Possible for each system (each air conditioner)	Same as left	Possible by assembling required specification filter on air conditioner	Noise control possible
в	Air-cooling heat pump chiller + Ceiling embedded- type fan coil unit + Ceiling embedded- type outdoor air treatment unit	317	45	362	80	_	140	220	ø100 × 162 ø250 × 108	Possible for each outdoor air treatment unit (Per unit size)	Same as left	Possible by assembling required specification filter on outdoor air treatment unit and fan coil unit	Little noise emitted
С	Air-cooling heat pump chiller Single suction method	393	67	460	50	567	_	617	ø100 × 45	Possible for each air conditioner	Same as left	Possible by assembling required specification filter on air conditioner	Relatively loud
D	Ceiling embedded- type air-cooling heat pump Package air conditioner (City Multi) + Ceiling embedded- type outdoor air treatment unit	239	47	286	80	_	150	230	ø250 × 189	Possible for each outdoor air treatment unit (Per unit size)	Same as left	Possible by assembling required specification filter on air conditioner and outdoor air treatment unit	Little noise emitted, but louder than B system
E	B system + D system (combined use) (B system for general floors) (D system for special floors)	285	53	338	80	_	200	280	ø100 × 144 ø250 × 21	Possible for each outdoor air treatment unit (Per unit size)	Same as left	Possible by assembling required specification filter on outdoor air treatment unit, air conditioner and fan coil unit	Little noise emitted

2.3 Proposed details

A) General floors

An independent dispersed-type control system incorporating an air cooling heat pump chiller and cassette-type fan coil unit for cooling and heating is used. This can cater for load fluctuations resulting from increases in office automation systems or changes in partitions hence requiting independent control of each module zone (approx. 70 m²). Outdoor-Air Processing unit is used for ventilation and humidification, and construction and space is reduced by using a system ceiling and ceiling chamber method. (Table 1 B system)

B) Special floors

City Multi and Outdoor-Air Processing unit are applied as package-type independent units, located so as to conform with lighting fixtures, air outlets and suction inlets in rooms where the interior is important while ensuring the required air-conditioning quality. (Table 1 D system)

System using fan coil unit (general floors)

2.4 Effect

(1) Individual control is possible

Individually dispersed air conditioning that creates a comfortable environment according to general floor and special floor needs is realised.

(2) Energy conservation

Wasted air conditioning energy is eliminated allowing great reduction in operation costs.

(3) Space saving

The Outdoor-Air Processing unit, fan coil unit and building air conditioner are all ceiling embedded-types, so the back of the ceiling is used effectively, saving machine room space and floor space.

(4) Construction saving

The ventilation functions have been unitised with the Outdoor-Air Processing unit, and all air conditioner units can be unitised allowing construction to be reduced.

(5) Simple architecture layout

Machine room space and main duct space for air conditioning are not required, so limits in the layout are reduced.

General floor air conditioning facilities

Air intake
 ④: Supply diffuser
 FCU: Fan coil unit
 GU: Outdoor-Air processing unit

	New air conditioning system	Conversional air conditioning system
Heat source equipment	Air-cooling heat pump chiller	Air-cooling heat pump chiller
Air Conditioner	Outdoor air treatment unit Outdoor-Air Processing unit (8 units on each floor) ⇐ Ceiling embedded- type fan coil unit	Air handling unit (1 unit on each floor) - Floor-type fan coil unit

Ratio with convertional air conditioning system as 100

Compaarison with conventional air conditioning system

2.5 System trends

- Creation of an environment including independence, management and control of each zone can be realised as work trends become more diversified.
- Simultaneous cooling/heating system due to necessity from increased fixed sash windows and increase in office automation systems.
- Attention is being paid to building management methods which manage not only air conditioning systems for several buildings at one location but also manage other information.

3. Multipurpose Tenant Building

3.1 System plan points

In many business district buildings, use of the lower floors for shops, halls and theatres, etc., and the middle and upper floors for offices and tenants is often seen. An air conditioning and ventilation system using a per floor method with each floor as a tenant unit is proposed in this example.

Setting outline

- Application : Business (lower floors), office tenants (mid- to upper floors)
- Building form : SRC (Slab Reinforced Concrete)
- Total floor space : 6,334 m² (B1 to 8F)
- Application per floor : B1: Storage, machine room
 - GF, 1F : Bank
 - 2F, 3F : Theatre, concert hall
 - 4F to 8F : Tenant offices
- Air conditioning : Machine room installation-type package air conditioner, ceiling suspended cassette-type air conditioner
- Ventilation
 Building Lossnay, ceiling suspended cassette-type Lossnay, straight centrifugal fan

3.2 Current topics

- The operation times of the lower floors and that in the mid- to upper floors differ. (Efficiency and adaptability is required in control and operation aspects.)
- (2) Maintainability is poor when the system is too dispersed.
- (3) Handling of needs in tenant units is poor when the system is too concentrated.
- (4) When a centralised heat source system is applied, a maximum load adaptability and maintenance control system is required.
- (5) When ventilation is too dispersed, designing of the outer wall becomes a problem.

Installation state

3.3 Plan details

(1) Lower floors for business

A machine room installation-type package and building Lossnay is applied as a centralized method for each unit. (One system for ground and 1st floor banking institution, one system for 2nd and 3rd floor hall.)

(2) Mid- to upper floors for office tenants

As an air conditioning system for each floor unit, a package air conditioner and Lossnay LP is combined in the machine room to handle the interior load and ventilation, and a ceiling suspended cassette-type package to handle the perimeter. The toilet and kitchenette are ventilated with a straight centrifugal fan on each floor, and supply for the outdoor air is provided to the LP Lossnay air supply.

This allows independent operation and control for each floor.

(3) Control room, lounge, etc.

Independent use is possible with the ceiling suspended-type air-conditioner and ceiling suspended cassette-type Lossnay.

 4F to 8F: Tenant offices – Lossnay installation sites:

machine room on each floor To reduce installation space, a package-type LP Lossnay with built-in air-supply fan and filter is incorporated and combined with the air conditioner in the machine room on each floor.

Air conditioning system diagram

3.4 Effect

- (1) Management in tenant units is clear and simple
- (2) Maintenance is simple as the maximum centralization can be planned while having independent tenants.
- (3) As ventilation units are considered per floor, there are few openings on the outer wall, making designing of the outer wall more simple.
- (4) Outdoor air cooling is possible while ventilating.

4. Urban Small-Scale Building

4.1 System plan points

This system is based on effectively using available space within a limited area by installing the air conditioner and ventilator in available excess space.

For this application, the air flow must be considered for the entire floor with the ventilator installed in the ceiling space.

Setting outline

- Application : Office
- Building form : RC (Reinforced Concrete)
- Total floor space : 552 m² (B1 to 5F)
- Application per floor : B1: Parking area
 - GF to 5F: Office
- Air conditioning : Package air conditioner
- Ventilation : Ceiling embedded-type and cassette-type Lossnay, straight centrifugal fan, duct ventilation fan.

4.2 Current topics

- (1) Three sides of the building are surrounded by other buildings, and windows cannot be installed. (Dependency on mechanical ventilation is high.)
- (2) Ample fresh outdoor air cannot be supplied. (Generally, only Class 3 ventilation (forced exhaust) is possible.)
- (3) If the exhaust in the room is large, odors from the toilet, etc., flow into the room.
- (4) Humidification during winter is not possible.

4.3 Plan details

- (1) Air conditioning
 - Space efficiency and comfort during cooling/heating is improved with ceiling embedded cassette-type package air conditioner.
- (2) Ventilation

Room	χ Entire area is ventilated by installing several ceiling embedded-type Lossnay units.
 Salon corner 	^J Humidification is possible by adding a humidifier.
	(Outdoor air is supplied to the toilet and kitchenette by setting the selection switch on the Lossnay unit for supply to the extra-high notch.)
 Conference room 	} Area is independently ventilated by installing a ceiling embedded-type or cassette-type Lossnay
 Board room 	¹ in each room.
Toilet, powder roomKitchenette	} Area is exhausted with straight centrifugal fan or duct ventilation fan.

- (An adequate exhaust volume can be obtained by taking in outdoor air, with the toilet being ventilated constantly.)
- Position of air intake/exhaust air outlets on outer wall The freshness of the outdoor air taken in by the Lossnay is important, thus considering that the building is surrounded by other buildings, the intake and exhaust ports must be separated as far as possible.

4.4 Effect

- (1) Accurate ventilation is possible with Class 1 ventilation (forced simultaneous air intake/exhaust) using the Lossnay.
- (2) Outdoor air supply to the toilet and kitchenette is possible with the Lossnay, and accurate ventilation is possible even in highly sealed buildings.
- (3) Flow of odors can be prevented with constant ventilation using an adequate ventilation volume.
- (4) Humidification is possible by adding a simple humidifying unit to the Lossnay.

5. Hospitals

5.1 System plan points

The principle of ventilation in hospitals requires adequate exhausting from the generation site and ensuring a supply of ample fresh air. An appropriate system would be an independent ventilation system with Class 1 ventilation (forced simultaneous air intake/exhaust).

The fan coil and package air conditioning are used according to material and place, and the air conditioned room is ventilated with the ceiling embedded-type Lossnay. The toilet and kitchenette, etc., are ventilated with a straight centrifugal fan.

Setting outlineBuilding form

- : RC (Reinforced Concrete)
- Total floor space : 931 m² (GF to 2F)
- Application per floor : GF : Waiting room, diagnosis rooms, surgery theatre, director room, kitchen
 - 1F : Patient rooms, nurse station, rehabilitation room, cafeteria
 - 2F : Patient rooms, nurse station, head nurse room, office : Fan coil unit, package air conditioner
- Air conditioning : Fan
- Ventilation
 : Ceiling embedded-type Lossnay, straight centrifugal fan

5.2 Current topics

- Prevention of in-hospital transmission of diseases (Measures meeting needs for operating rooms, diagnosis rooms, waiting rooms and patient rooms are required.)
- (2) Adequate ventilation for places where odors are generated (Measures to prevent odors from toilets from flowing to other rooms are required.)
- (3) Shielding of external noise (Shielding of noise from outside of building and noise from adjacent rooms and hallway is required.)
- (4) Assurance of adequate humidity
- (5) Energy conservation

5.3 Plan proposals

(1) Air conditioning

- Centralised heat source control using a fan coil for the general system allows efficient operating time control and energy conservation.
- 24-hour system using a package air conditioner for special rooms (surgery theatre, nurse station, special patient rooms, waiting room) is the most practical.

(2) Ventilation

• Hall system

Independent system using centralised control with LP Lossnay or independent system with installation of ceiling suspended-type Lossnay

• Surgery theatre

Combination use of LP Lossnay and package airconditioner with HEPA filter on room supply air outlet.

• Diagnosis rooms and examination room

Patient rooms

Nurse stations

Independent ventilation for each room using ceiling suspended/ embedded-type Lossnay.

- Integral system with optional humidifier possible for required rooms.
- Positive/negative pressure adjustment, etc., is possible by setting main unit selection switch to extra-high notch (25R, 50R models) according to the room.

Toilet/kitchenette

Straight centrifugal fan or duct ventilation fan

• Storage/linen closet

Positive pressure ventilation fan or duct ventilation fan The outdoor air is supplied from the hallway ceiling with the straight centrifugal fan, and is distributed near the air conditioner after the air flow is reduced.

Kitchen

Exhaust with negative pressure ventilation fan or straight centrifugal fan. Outdoor air is supplied with the straight centrifugal fan.

Machine room

Exhaust with positive pressure ventilation fan.

1F layout

5.4 Effect

- (1) The following is possible by independently ventilating the air-conditioned rooms with the Lossnay:
 - Transmission of diseases can be prevented by shielding the air between rooms.
 - Infiltration of outside noise can be prevented with the Lossnay Core's soundproof properties.
 - As outdoor air does not need to be taken in from the hallway, the door can be sealed, shutting out hallway noise.
 - Humidification is possible by adding a humidifier.
- (2) By exhausting the toilet, etc., and supplying outdoor air to the hallway:
 - Flowing of odors to other rooms can be prevented.

6. Schools

6.1 System plan points

A comfortable environment in classrooms is necessary to improve the children and students' desire to study.

Schools near airports, railroads and highways have sealed structures to soundproof the building, and thus air conditioning and ventilation facilities are required. This is also true for schools in polluted areas such as industrial districts.

At university facilities which have a centralised design to efficiently use land and to improve the building functions, the room environment must also be maintained with air conditioning.

6.2 Current system details and problem points

- (1) Mainly single duct methods, fan coil unit methods, or package methods are used for cooling/heating, but the diffusion rate is still low, and water-based heaters are still the main source of heating.
- (2) The single duct method is difficult to control according to the usage state, and there are problems in running costs.
- (3) Rooms are often ventilated by opening the windows or using a ventilation gallery, where although this provides ample ventilation volume it may create a problem of infiltration of outside noise.

6.3 Building outline

Total floor space : 23,000 m³ Building outline : Prep school (high school wing) Memorial hall wing Library wing Main management wing

6.4 Plan details

- (1) To pursue comfort, save energy and space, an air conditioning and ventilation system using a ceiling embedded-type fan coil unit and ceiling embedded-type Lossnay was applied.
- (2) Automatic operation using a weekly program timer was applied, energising when the general classrooms and special classrooms are to be used.
- (3) By using a ventilation system with a total heat recovery unit, energy is saved and soundproofing is realised.

6.5 Conditions for air-conditioning in schools

- (1) Zoning according to application must be possible.
- (2) Response to load fluctuations must be swift.
- (3) Ventilation properties must be good.
- (4) The system must be safe and rigid.
- (5) Expansion of the facility must be easy.
- (6) Installation on existing buildings must be possible.
- (7) Installation and maintenance cost must be low.

6.6 System trends

- (1) It is believed that environmental needs at schools will continue to progress towards high quality, and various factors such as temperature/humidity, noise, natural lighting, and colour must be considered at the design stages. Important topics are air conditioning, ventilation and soundproofing.
- (2) Independent heating using a centralised control method is mainly applied when the air conditioner is for heating only. For cooling/heating, a combination of a fan coil method and package-type is the main method used.
- (3) Highly accurate Class 1 ventilation is applied for the ventilation method, and the total heat recovery unit is mainly used in consideration of the energy saved during air conditioning and the high soundproofing properties.

7. Hotels (convention halls, wedding halls)

7.1 System plan points

Hotels in Japan often have functions such as a resort hotel at tourist spots, convention hotel with conference and banquet halls, and business hotels for short-term stays. These are all labeled as hotels, and often, more importance is laid on the wedding, convention and banquet halls, etc.

This is because air conditioning systems in these places must have a ventilation treatment system that can handle extremely large fluctuations in loads, tobacco smoke and removal of odors.

7.2 Current systems and problem points

CO and CO₂ permissible values, removal of odors, and tobacco smoke are often considered as standards for ventilation and often the ventilation is set at 30 m³/h·person to 35 m³/h·person. Several outdoor air introduction-type package air conditioners or air handling unit facilities are often used, but, these are greatly affected by differences in capacity, ratio of smokers and length of stay.

7.3 Plan details

This proposed plan has two examples with the use of a Lossnay as a ventilator for total heat recovery in the air conditioned conference room, and the use of several outdoor air type package air-conditioners for convention and banquet halls.

A) Conference room

Heat recovery ventilation is executed with constant use of the Lossnay unit, but when the number of persons increases suddenly and the CO₂ concentration reaches a set level (for example, 1,000 ppm in the Building Management Law), a separate centrifugal fan operates automatically. This system can also be operated manually to rapidly remove smoke and odors.

B) Convention and banquet halls

Basically, this system is composed of several outdoor air introduction-type package air conditioners and straight centrifugal fans for ventilation. However, an inverter controller is connected to the centrifugal fan so that it is constantly at 50 percent of the operation state, allowing fluctuations in ventilation loads to be handled. By interlocking with several package air-conditioners, detailed handling of following up the air condition loads in addition to the ventilation volume is possible.

Systems using Lossnay are also possible.

7.4 System trends

The load characteristics at hotels is complex compared to general buildings, and are greatly affected by the bearing, time, and operation state as mentioned above. Further to this, the high ceilings in meeting rooms and banquet halls, requires preheating and precooling to be considered. Further research on management and control systems and product development will be required in the future to pursue even further comfortable control within these spaces.

8. Public Halls (combination facilities such as day-care centres)

8.1 System plan points

Air conditioning and ventilation facilities for buildings located near airports and military bases, etc., that require soundproofing, have conventionally been of the centralised method. However, independent dispersed air conditioning and ventilation has been demanded due to the need for operation in zones, as well as for energy conservation purposes. This system is a plan for these types of buildings.

Setting outline

 Building form 	:	Above ground 2, Total floor space: 385 m ²
 Application 	:	GF Study rooms (2 rooms), office, day-care room, lounge
		1F · · · · · Meeting room
 Air conditioning 	:	GF Air-cooling heat pump chiller and fan coil unit
		1F ····· Air-cooling heat pump package air conditioner
 Ventilation 	:	Ceiling embedded Lossnay

8.2 Conventional system and topics

- (1) Conventional systems have used centralised methods with air handling units, and air conditioning and ventilation were generally performed together.
- (2) Topics
 - 1) Special knowledge is required for operation, and there are problems in response to the users' needs.
 - 2) When the centralised method is used, the air even in rooms that are not being used is conditioned, increasing running costs unnecessarily.
 - 3) Machine room space is necessary.
 - 4) Duct space is necessary.

8.3 Plan details

(1) Air conditioning facilities

- 1) Small rooms : Air-cooling heat pump chiller and fan coil unit combination
- 2) Meeting rooms : Single duct method with air-cooling heat pump package air conditioner

(2) Ventilation facilities

1) A ceiling embedded-type Lossnay is used in each room, and a silence chamber, silence-type supply/return grille, silence duct, etc. is incorporated on the outer wall to increase the total soundproofing effect.

8.4 Effect

- (1) Operation is possible without special knowledge, so management is easy.
- (2) Operation is possible according to each room's needs, and is thus energy-saving.
- (3) Soundproof ventilation is possible with the separately installed ventilators.
- (4) Energy saving ventilation is possible with the heat recovery ventilation.
- (5) Space saving with the ceiling embedded-type.

Soundproofing standards –	 Soundproofing effect
High pressure level difference	Study room: 34.0 dB
30 dB or more	Rest room : 47.2 dB

CHAPTER 7

Installation Considerations

1. LGH-Series Lossnay Ceiling Embedded-Type (LGH-RX₃ Series)

$LGH-15\cdot 25\cdot 35\cdot 50\cdot 80\cdot 100RX_3\ models$

- Always leave inspection holes (□ 450 or □ 600) on the air filter and Lossnay Core removal side.
- Always insulate the two ducts outside the room (intake air and exhaust air ducts) to prevent frosting.
- It is possible to change the direction of the outside air ducts (OA and EA side).
- It is possible to attach a suspension bolt.
- Do not install the vent cap or round hood where it will come into direct contact with rain water.

Air volume (m ³ /b)	Model	Dimension			
	Woder	Α	В		
150	LGH-15RX₃	700	641		
250	LGH-25RX₃	700	765		
350	LGH-35RX₃	790	906		
500	LGH-50RX₃	790	1,048		
800	LGH-80RX₃	1,030	1,036		
1000	LGH-100RX ₃	1,030	1,263		

LGH-150 · 200RX3

- Always leave inspection holes (□ 450 or □ 600) on the air filter and Lossnay Core removal side.
- Always insulate the two ducts outside the room (intake air and exhaust air ducts) to prevent frosting.
- If necessary, order a weather cover to prevent rain water from direct contact or entering the unit.

- (1) The ceiling embedded-type: $150 \cdot 250 \cdot 350 \cdot 500 \cdot 800 \cdot 1000 \cdot 1500$ and 2000 m³/h types are available. Select an adequate model according to the room size, air volume for the application and noise levels.
- (2) The LGH-15 · 25 · 35 · 50 · 80 · 100 types have an extra-high notch. This setting is for when a long duct is used or when a large air volume is required. The positive and negative pressures of the room can also be adjusted with this.

(3) The units have a low-noise design, however, for further noise reduction a silencer-type supply/return grille (PZ-FG-type) for supply/return air in the room, a silencer box (PZ-SB-type) for reducing the air sound into the room, and a flexible silencer (PZ-SD-type) are available.

Silencing effect of each part

	Model	Silencing effect	Application models	Duct diameter
	PZ-10FG₃	3 dB	LGH-15RX₃	ø100
Supply/roturn grillo	PZ-15FG₃	4 dB	LGH-25RX₃	ø150
	PZ-20FG₃	4 dB	LGH-35 · 50RX₃	ø200
	PZ-25FG₃	4 dB	LGH-80 · 100RX₃	ø250
Siloncor box	PZ-20SB ₂	6 dB	LGH-35 · 50RX3	ø200
	PZ-25SB2	6 dB	LGH-80 · 100RX₃	ø250
	PZ-10SD	22 dB	LGH-15RX₃	ø100
Elovible cilopoor	PZ-15SD	21 dB	LGH-25RX₃	ø150
	PZ-20SD	20 dB	LGH-35 · 50RX₃	ø200
	PZ-25SD	18 dB	LGH-80 · 100RX3	ø250

1.1 Selecting Duct Attachment Direction

You can choose between two directions for the outside duct (OA, EA) piping direction, to improve construction.

1.2 Installation and maintenance

- (1) Always leave an inspection hole (1450) on the filter and Lossnay Core removal side.
- (2) Always insulate the two ducts outside the room (intake air and exhaust air ducts) to prevent frosting.
- (3) Enforce measures to prevent rain water from entering.
 - Apply a slope of 1/30 or more towards the wall to the two ducts outside the room (intake air and exhaust air ducts).
 Do not install the vent cap or round hood where it will come into direct contact with rain water.
- (4) Use the optional parts "control switch" (Ex. PZ-41SLB, etc.) for the RX₃-type. A centralised controller can also be used.

1.3 Installation applications

(1) Combined installation of two units

The main unit's supply outlet and suction inlet and the room side and outdoor side positions cannot be changed. However, the unit can be turned over, and installed as shown below. (This is applicable when installing two units in one classroom, etc.)

(2) System operation with air conditioner

Air conditioning systems with independent dispersed multiple unit air-conditioners are increasing due to merits such as improved controllability, energy conservation and space saving.

For these types of air conditioning systems, combined operation of the dispersed air conditioners with the Lossnay, is possible.

2. Business Lossnay Suspended Exposed-Type

(1) Leave at least a 400 mm maintenance space at the right side of the main unit for connection of the control switch and power to the main unit.

When attaching square duct

When attaching round duct

(2) When the installation position is decided, make a hole in the wall for the supply air box with bellows. See the following unit regarding the size and position in relation to the Lossnay main unit.

- (3) If using wood boards for installation, make wood boards that match the hole size dimensions for wood boards shown in the illustration above. In this case, make the size of the hole in the wall such that wooden boards of the dimensions given above can fit through.
- (4) Use the extension bellows (PZ-50EJ₂) or the extension duct if the space between the flange of the main unit and the bellows connection area of the supply air box with bellows is more than 200 mm.

⚠ CAUTION

When connecting round ducts, remove the square flange, and attach the round ducts as shown below.

3. Building Lossnay Pack-type (LP-200B · 350B · 500B · 750B · 1000B)

System concept diagram

Installation examples

- (1) The LP-200B \cdot 350B \cdot 500B \cdot 750B and 1000B building Lossnay Packs models are available with an air volume of 1000 to 13000 m³/h.
- (2) Select an adequate model according to the building size, air volume for application and static pressure of outside unit.

Air passage

- 1. The fresh outdoor air is filtered with the intake filter, and the heat is recovered with the Lossnay Core (during winter; heated and humidified, during summer; cooled and dehumidified). Then it is supplied by the supply fan.
- 2. The optional high efficiency filter is placed between the Lossnay Core and supply fan, to refilter the air that has been filtered by the intake filter.
- 3. The stale air passes through the damper, and is filtered by the exhaust filter. The heat is recovered with the Lossnay Core, and then discharged by the exhaust fan.
- 4. The bypass passage for normal ventilation bypasses the air on the exhaust side. If the bypass damper is closed, the stale air will be directly drawn in by the exhaust fan and discharged.

3.1 Main unit base installation surface diagram

3.2 Maintenance space

3.3 Flange dimensions

3.4 Transportation and installation

(1) LP-200B · 350B · 500B

- The product is shipped in the fully assembled state. Transport the unit gently and do not apply shock or tilt the unit.
- Use eyebolts (or eyenuts) when lifting the unit. Always use the four eyebolts, and fix with rope. Adjust the rope length so that the angle between the rope and the unit is 45° or more.

The panel will be damaged if the rope directly contacts the unit. Always use filler plates or wood.

- The foundation for the unit must be sturdy and level.
- Install the unit perpendicularly to the foundation and securely fix the unit with anchor bolts.
- Install the unit where it will not come into contact with rain water, and where rain water will not enter the unit from the ducts.
- The unit may be disassembled into two parts, and transported with the following procedure if installation as a complete product is not possible.

Disassembly

- 1) Remove the cover for the air filter and Lossnay Core. Remove the air filter and then the Lossnay Core.
- 2) Disconnect the cord (for bypass) connected to the fan chamber motor in the lower part of the unit.
- 3) Remove the six screws fixing the top and bottom of the unit.

(2) LP-750B · 1000B

- This product is shipped in two parts and assembled at the installation site.
- Always lift the Core chamber and the fan chamber separately even when lifting the entire product in the assembled state using the eyebolts (or eyenuts) mounted on the unit.
- Always be sure to use the eyebolts (or eyenuts) when lifting the unit. Always use the four eyebolts, and securely fix the rope. Adjust the rope length so that the angle between the rope and the unit is 45° or more.
- The foundation for the unit must be sturdy and level.
- Install the unit perpendicularly to the foundation and securely fix the unit with anchor bolts.
- Install the unit so rain water will not enter the unit from the ducts.
- To assemble the separate parts, align the slots on the core chamber to the bolts on top of the fan chamber, and fix with the enclosed washers and nuts (six each).
- Remove the inspection hole cover and connect the geared motor plug for the bypass to the plug in the Core chamber from inside.

Weight when disassembled

Unit (kg)

	Top (Core chamber)	Bottom (fan chamber)	Total
LP-200B	140	240	380
LP-350B	230	290	520
LP-500B	300	380	680

Weight when disassembled

Unit (kg)

	Top (Core chamber)	Bottom (fan chamber)	Total
LP-750B	140	240	380
LP-1000B	230	290	520

4. Building Lossnay Unit Vertical-type (LUT-2302 · 2303 · 3002 · 3003)

4.1 Main unit dimensions and flange dimensions

- This unit is for indoor installation.
- The flange is an inner-flange.
- The special filter is not sold separately and must be prepared by the user.

(Two on Core's intake side.)

							-			Unit (mm)
		Α	В	С	D	E	F	G	н	J
	LUT-2302	1000	900	950	900	2382	1125	1085	1000	4
Single-	LUT-2303	1500	1400	1450	1400	2382	1125	1085	1000	6
type	LUT-3002	1000	900	950	900	3132	1500	1460	1440	4
	LUT-3003	1500	1400	1450	1400	3132	1500	1460	1400	6

4.2 Main unit installation surface diagram

■ Single-type floor installation surface diagram

Combination-type floor installation surface diagrams (Example)

4.3 Combination dimensions

- The combined-type uses a combination of single-type units.
- The combined-type is shipped in the disassembled state. (A combination of single-type units.)

4.4 Maintenance space

- The Lossnay Core is cleaned from the intake/exhaust chamber sides.
- Allow an inspection space of 50 cm or more in the chamber.
- Ensure that the Core inspection door can open and close, and always install an inspection door for cleaning the ducts.

4.5 Transportation and installation

- Always use shackles to lift the Lossnay Core section as shown in the figure. Fix the main unit with the eyenuts for lifting the unit, and suspend the unit in four places. (Fig. 1)
- Adjust the rope length so that the angle between the rope and the unit is 45° or more. (Fig. 1)
- The panel will be damaged if the rope directly contacts the unit.
- When combining the units, use the enclosed top connection fittings (two) and bottom connection fittings (two). Securely fix the top with the four M10 screws and four washers and the bottom with eight M8 screws so that the fitting with the flange is tight.
- Always leave the maintenance space shown in the diagram.
- The foundation for the unit must be sturdy and level.
- Install the unit perpendicularly to the foundation and securely fix the unit with anchor bolts.
- Install the unit so rain water will not enter the unit from the ducts.

5. Building Lossnay Unit Horizontal-type (LU-80 · 160 · 500)

5.1 Main unit installation surface diagram (anchor bolt installation position)

5.2 Maintenance space

5.3 Combination dimensions and flange dimensions

$LU\text{--}1602 \cdot 1603 \cdot 1604 \cdot 1605 \cdot 1606$

					- ()
	Α	В	С	D	E
LU-1602	1010	670	750	710	Pitch $100 \times 6 = 600$
LU-1603	1520	1180	1260	1220	Pitch 100 × 10 = 1000
LU-1604	2030	1690	1770	1730	Pitch 100 × 16 = 1600
LU-1605	2540	2200	2280	2240	Pitch 100 × 20 = 2000
LU-1606	3050	2710	2790	2750	Pitch 100 × 25 = 2500

LU-502 · 503 · 504 · 505

Unit (mm)

Unit (mm)

	Α	В	С	D	E
LU-502	1730	1170	1250	1210	Pitch 100 × 10 = 1000
LU-503	2600	2040	2120	2080	Pitch 100 × 20 = 2000
LU-504	3470	2910	2990	2950	Pitch 100 × 27 = 2700
LU-505	4340	3780	3860	3820	Pitch 100 × 36 = 3600

5.4 Transportation and installation

The product is shipped in the fully assembled state. Transport the unit gently and do not apply shock or tilt the unit.

(1) Use eyebolts (or eyenuts) and rope when lifting the unit. Make sure that the rope can withstand the weight of the unit. Always use all four eyebolts, and fix the rope.

Adjust the rope length so that the angle between the rope and the unit is 45° or more.

- (2) Use filler plates to protect the panel so that the panel is not damaged by the rope during lifting.
- (3) The unit will be damaged if the rope directly contacts the unit.
- (4) The foundation must be made of concrete. The concrete foundation must be level and have ample strength.
- (5) Install the unit perpendicularly to the foundation and securely fix the unit with anchor bolts.
- (6) Install the unit where rain water will not come into contact, and where rain water will not infiltrate the unit from the ducts.

≜ Caution

This unit has indoor specifications and cannot be installed in sites where it will come into contact with rain water or in high temperature, high humidity locations.

6. Industrial Moisture Resistant Lossnay (LUP-80 · 160 · 500)

The moisture resistant Lossnay requires drains. Install the unit by lifting it from the floor with a base, etc., so that draining from under the unit is also possible. (A base is provided for the combined types.)

6.1 Combination-type installation surface diagram (anchor bolt installation position, drain pipe position)

6.2 Maintenance space

6.3 Combination dimensions and flange dimensions

LUP-1602 · 1603 · 1604 · 1605 · 1606

Α В С D Е LU-1602 1010 670 750 710 Pitch $100 \times 6 = 600$ LU-1603 1520 1180 1260 1220 Pitch $100 \times 10 = 1000$ LUP-160-LU-1604 2030 1690 1730 Pitch $100 \times 16 = 1600$ type set 1770 parts LU-1605 2540 2200 2280 2240 Pitch 100 × 20 = 2000 LU-1606 3050 2710 2790 2750 Pitch 100 × 25 = 2500

Unit (mm)

Unit (mm)

Unit (mm)

		Α	В	С	D	E		
	LUP-502	1730	1170	1250	1210	Pitch 100 × 10 = 1000		
LUP-500-	LUP-503	2600	2040	2120	2080	Pitch 100 × 20 = 2000		
type set	LUP-504	3470	2910	2990	2950	Pitch 100 × 27 = 2700		
parts	LUP-505	4340	3780	3860	3820	Pitch 100 × 36 = 3600		
High temperature, Highly humid air A B' Constraints Highly humid air A Highly humid air A Constraints Highly humid air A Con								

850

100

200 850

2100 Drain pipe (Detailed diagram)

LUP-502 · 503 · 504 · 505 · 506

6.4 Transportation and installation

Drain pipe details

The product is shipped in the fully assembled state. Transport the unit gently and do not apply shock. When installing, allow a slight slant so that the drain pipe is lower than the unit.

Air filter can be installed (optional Core, air filter removal cover Duct connection flange

1) Use eyebolts (or eyenuts) and rope when lifting the unit. Make sure that the rope can withstand the weight of the unit. Always use all four eyebolts (or eyenuts), and fix the rope.

▲ Caution

- Use filler plates to protect the panel so that the panel is not damaged by the rope during lifting.
- The unit will be damaged if the rope directly contacts the unit.
- Confirm that the drain pipe is at the set position when installing.
- The foundation must withstand the weight of the unit.
- Securely fix the unit with anchor bolts, etc.
- Make sure that rain water will not enter the unit from the ducts.
- Make sure that the indoor-type does not come into contact with rain water.
- Make sure that air will not leak and water will not enter from the duct connections.

6.5 Precautions for installation

(1) Installation and usage conditions

- The unit can be used in a temperature range of -10°C to + 80°C.
- The Lossnay cannot be used where toxic gases and corrosive elements such as acids, alkalis, organic solvents, oil mist or paints exist.
- Always mount an air filter on the air suction sides (intake and return sides).
- A minimum of 800 mm is required for the Lossnay Core and air filter maintenance space.
- Drainage may occur when the air from the high temperature side passes through the Lossnay Core. Construct the air passage so that the high temperature air flows from top to bottom, and connect a drain pipe.

(2) External dewing on product

Moisture may condense on the outside of the product or the dew may drip depending on the product installation site or the conditions of the air passing through the Lossnay Core. Install the unit in a place that will not be affected by the dew that drops.

Perform the following measures if the place will be affected:

- 1) Insulate the outside of the product.
- 2) Manufacture a drain pan that covers the entire unit, and catch the dew that drips from the entire unit.

(3) Mounting of air filter

Always mount the optional air filter (PZ-80F, PZ-500F) to the air suction sides (intake and return sides) of the Lossnay Core to prevent the Core from clogging.

• When exhausting air containing oil mist or paint, etc., filter the mist with a grease filter or high efficiency filter before passing the air through the Lossnay.

(4) Dew and Frost on Lossnay Core

If a line is drawn horizontally from the high temperature conditions of B to C, as shown on the psychrometric chart, moisture will condense on the Lossnay Core, and the air at the outlet will be the conditions shown at C'.

If the C' temperature is lower than 0°C, frosting or ice may occur in the Lossnay Core. Thus, heat the air from the low temperature side from A to A', so that C' is higher than 0°C.

▲ Caution

When using the plastic Lossnay Core in the moisture condensed state, the pressure loss on the condensed side will increase by approximately 50%, so use fans that meets these conditions.

CHAPTER 8

Filtering for Freshness

1. Necessity of Filters

Clean air is necessary for humans to live a comfortable and healthy life. Besides atmospheric pollution that has been generated with the development of modern industries and the growth in the use of automobiles, air pollution in air-tight room has progressed to the point where it adversely affects the human body, and is now a major problem.

Hay fever is now a symptom often seen in the spring and demands for preventing pollen from entering rooms are increasing.

2. Data Regarding Dust

The particle diameter of dust and applicable range of filters are shown in Table 1, and representative data regarding outdoor air dust concentrations and indoor dust concentrations is shown in Table 2.

Table 1 Aerosol particle diameters and applicable ranges of various filters

Table 2 Major dust concentrations

Туре	Reference data				
	Large city	0.1 - 0.15 mg/m ³			
concentration	Small city	0.1 mg/m ³ or less			
	Industrial districts	0.2 mg/m ³ or more			
	General office	10 mg/h per person			
Indoor dust concentration	Stores (product vending stores)	5 mg/h per person			
	Applications with no tobacco smoke	5 mg/h per person			

Remarks:

- The core diameter of outdoor air dust is said to be 2.1 μm, and the 11 types of dust (average diameter 2.0 μ) as set by JIS Z8901 as performance test particles are employed.
- Dust in office rooms is largely caused by smoking, and the core diameter is 0.72 μm. The 14 types of dust (average 0.8 μm) as set by JIS Z8901 as performance test particles are employed.
- 3. The core diameter of dust generated in rooms where there is no smoking is approximately the same as outdoor air.
- 4. Smoking in general offices (as per Japan): Percentage of smokers : Approx. 70% (adult men) Average number of cigarettes : Approx. 1/person h (including non-smokers) Smoking length of cigarette : Approx. 4 cm Amount of dust generated by one cigarette : Approx. 10 mg/cigarette

3. Calculation Table for Dust Collection Efficiency of Each Lossnay Filter

Measurement method		Applicable	AFI Gravitational method	ASHRAE Colorimetric method	Countingh method (DOP method)		Application		
Filter type	dust		moder	Compound dust	Atomspheric dust	JIS 14 types DOP 0.8 μm	DOP 0.3 µm		
Pre-filter	NP/400)	Commercial Lossnay (LGH)	82%	8% - 12%	5% - 9%	2% - 5%	Protection of heat recovery element	
	Model PZ-15RFM - 100RFM		Optional Part for model LGH-15RX ₃ - 200RX ₃	99%	65%	60%	25%		
High efficiency filter	Model Model	PZ-25FMY PZ-15FM - 100FM	Humidifer High efficiency filter unit	99%	65%	60%	25%	Assurance of sanitary environment (According to Building Management Law)	
	Model	PZ-200FM - 1000FM	Optional part for models LP-200B	100%	65%	65%	40%	Management Lawy	
	Model	PZ-200FH - 1000FH	High efficiency filter unit	100%	90%	90%	75%		

3.1 High-Efficiency Filter (Optional Parts)

Model	PZ-15RFM	PZ-25RFM	PZ-35RFM	PZ-50RFM	PZ-80RFM	PZ-100RFM	
Dimension (mm)	А	554	330	395	466	448	561
	В	121	147	174	174	236	236
Number of filters perset	1	2	2	2	2	2	

Note: This is one set per main body.

3.2 Pressure Loss

Pressure Loss Characteristics PZ-15RFM

PZ-100RFM

The ability of the filters used within the Lossnay units are shown below, expressed in terms of collection ratio (%).

4. Comparison of Dust Collection Efficiency Measurement Methods

The gravitational, colorimetric and counting methods used for measuring dust collection efficiency each have differing features and must be used according to the application of the filter.

Test method	Test dust	Inward flow dust measurement method	Outward flow dust measurement method	Efficiency indication method	Type of applicable filters
AFI Gravitational method	Synthetic: • Dust on standard road in Arizona: 72% • K-1 carbon black: 25% • No.7 cotton lint: 3%	Dust weight measured beforehand	 Filter passage air volume measured Weigh the dust remaining on the filter and compare 	Gravitational ratio	Synthetic dust filters
NBS Colorimetric method	Atmospheric dust	Degree of contamination of white filter paper	Degree of contamination of white filter paper	Comparison of contamination of reduction in degree of contamination	Electrostatic dust percentage of (for air conditioning)
DOP Counting method	Diameter of dicoctyl- phthate small drop particles: 0.3 µm	Electrical counting measurement using light aimed at DOP	Same as left	Counting ratio	Absolute filter and same type of high efficiency filter
ASHRAE Gravitational method	Synthetic: • Regulated air cleaner fine particles: 72% • Morocco Black: 23% • Cotton linter: 5%	Dust weight measured beforehand	 Filter passage air volume measured Weigh the dust remaining on the filter and compare 	Gravitational ratio	Pre-filter Filter for air conditioning (for coarse dust)
ASHRAE Colorimetric method	Atmospheric dust	Degree of contamination of white filter paper	Degree of contamination of white filter paper	Comparison of percentage of reduction in degree of contamination	Filter for air conditioning (for fine dust) Electrostatic dust collector
Air filter test for air conditioning set by Japan Air Cleaning Assoc. (Colorimetric test)	air t by ning JIS 11 types of dust Degree of contamination of white filter paper		Degree of contamination of white filter paper	Comparison of percentage of reduction in degree of contamination	Filter for air conditioning
Pre-filter test set by Japan Air Cleaning Assoc. (Gravitational test)	JIS 8 types of dust	Dust weight measured beforehand.	 Filter passage air volume measured Weigh the dust remaining on the filter and compare. 	Gravitational ratio	Pre-filter
Electrostatic air cleaning device test set by Japan Air Cleaning Assoc. (Colorimetric test)	JIS 11 types of dust	Degree of contamination of white filter paper	Degree of contamination of white filter paper	Comparison of percentage of reduction in degree of contamination	Electrostatic dust collector

Gravitational method

This method is used for air filters which remove coarse dust (10 μ m or more). The measurement method is determined by the gravitational ratio of the dust amount on the in-flow side and out-flow sides.

Colorimetric method

The in-flow side air and out-flow side air are sampled with a suction pump and passed though filtering paper. The sampled air is adjusted so that the degree of contamination on both filter papers is the same, and the results are determined by the sampled air volume ratios on both sides.

5. Calculation of Dust Concentration

An air conditioning system using the Lossnay is shown below. Using this diagram the level of dust concentration can be easily determined.

Dust concentration study diagram

Qo : Outdoor air intake amount (m3/h) $\eta o\,$: Filtering efficiency of humidifier with high efficiency filter % (colorimetric method)

Co : Outdoor air dust concentration (mg/m³)

Qi : Indoor unit air volume

(Total air volume of indoor unit) (m³/h) ni

: Filtering efficiency of filter for indoor unit % (colorimetric method)

Ci : Indoor dust concentration (mg/m³)

G : Amount of dust generated indoors (mg/h)

In this type of system, when the performance of each machine is known, the indoor dust concentration Ci may be obtained with the filtering performance of the filters, no and ni, having been set to specific values as per manufacturer's data. The following formula is used:

$$C_{i} = \frac{G + C_{o} Q_{o} (1 - \eta_{o})}{Q_{o} + Q_{i} \eta_{i}}$$

Also, with the value of Ci and ho known, the efficiency of the indoor unit can be found using:

$$\eta_{i} = \frac{G + C_{o} Q_{o} (1 - \eta_{o}) - C_{i} Q_{o}}{C_{i} Q_{i}} \times 100$$

[Calculation example]

The indoor dust concentration for the following types of design conditions with the above system shall be used in the following example.

• Outline of air conditioning

Air conditioning area	No. of persons in room	Outdoor air intake volume	Cooling capacity	Heating capacity
100 m ² (Office)	20 persons	$25 \text{ m}^3/\text{h} \text{ per person} \times 20 \text{ persons} = 500 \text{ m}^3/\text{h}$	15,700 W (13,500 kcal/h)	13,374 W (11,500 kcal/h)

Equipment used

Lossnay +	Model	Heat recovery during cooling		Heat recovery during heating		Intake volume	Filtering efficiency
high efficiency filter	LGH-50RS + PZ-50K (with high efficiency filter) 1 unit	3,710 W 3,907 W (3,190 kcal/h) (3,360 kcal/h)		500 m ³ /h	65% (colorimetric method)		
	Model	Cooling capacity	g Heating Air capacity volume		Fi	Itering efficiency	
Fan coil unit	LH-600CR-B₃F (with high efficiency filter) 2 units	5,338 W (4,590 kcal/h)	W 8,664 v cal/h) (7,450 kc		17 m ³ /min	(co	65% lorimetric method)

Calculation

Intake volume	$Q_0 = 500 \text{ m}^3/\text{h}$
Indoor unit air volume	$Q_i = 17 \times 2 \times 60 = 2,040 \text{ m}^3/\text{h}$
Filtering efficiency of humidifier with high efficiency filter	$\eta_0 = 65\% (\eta_0) = 91\%$ Particle diameter 2.1 μ_*)
Filtering efficiency of filter for inside unit	$\eta_i = 65\% (\eta_i' = 57\%$ Particle diameter 0.72 μ_*)
Outdoor air floating dust concentration	$C_{o} = 0.1 \text{ mg/m}^{3}$
Amount of dust generated in room	G = amount of dust generated per person × no. of persons in room = 10 mg/h·person × 20 persons = 200 mg/h

If the inside dust concentration Ci is found with the above, the following data is obtained:

$$Ci = \frac{200 + 0.1 \times 500 (1 - 0.65)}{500 + 2,040 \times 0.65} \approx 0.12 \text{ mg/m}^3 \text{ (} \approx 0.123 \text{ mg/m}^3\text{ (})$$

The result is less than the dust concentration limit of 0.15 mg/m^3 set by the Building Standard Law of Japan. If the filtering efficiency of a filter for the indoor unit is obtained to set the inside dust concentration Ci to 0.15 mg/m^3 , the following is obtained:

 $\eta_i = \quad \left\{ \frac{200 + 0.1 \times 500 \; (1 - 0.65) - 0.15 \times 500}{0.15 \times 2,040} \right\} \; \; \times \; 100 = 47\% \; (= 42\% \star)$

This shows that the filtering efficiency of the indoor unit filter must be a minimum of 47% (colorimetric method).

CHAPTER 9

Service Life and Maintenance

1. Service Life

The Lossnay Core has no moving parts. This stationary design eliminates vibration troubles and also permits greater installation flexibility. In addition, chemicals are not used in the heat recovery system. Performance characteristics remain constant throughout the period of service.

A lifetime test, currently in progress and so far reaching 17,300 hours, has revealed no evidence of either reduction in heat recovery efficiency or deterioration of materials. If 2,500 hours is taken as the number of hours a conditioner is used during a year, 17,300 hours corresponds to about seven (7) years.

(This explanation is not a guarantee of the service life of the product.)

2. Cleaning the Lossnay Core and Pre-filter

The Lossnay Core should be cleaned with a vacuum cleaner at least once every 2 years. This will remove the dust that has accumulated at the surface and restore the functioning of the core to 98 to 100% of the original figure. A brush should not be used for cleaning because it may trap the dust in the core resulting in clogging.

The air filter on the intake side of the Lossnay Core should be cleaned at least once every year. After cleaning, reinstall the

CHAPTER 10

Ventilation Standards in Each Country

1. Ventilation Standards in Each Country

1.1 Japan

Table Summary of Laws Related to Ventilation

Item Related Laws	Acceptable Range	Room Enviro	Reference pages				
		If a central air quality management system or mechanical ventilation equipment is installed, comply with the standard target values shown in the table below.		Applicable buildings are buildings designed to serve a specific purpose.			
	Buildings of at least	Impurity volume of floating particles	less than 0.15 mg per 1 m ³ of air	See page 123 for details.			
Law for Maintenance		CO rate	Less than 10 ppm. (Less than 20 ppm when outside supply air has a CO rate of more than 10 ppm.)				
of Sanitation in	3,000 m ² (for schools, at	CO ₂ rate	Less than 1,000 ppm.				
Duliulitys	least 8,000 m²)	Temperature	 Between 17°C and 28°C When making the room temperature cooler than the outside temperature, do not make the difference too great. 				
		Relative humidity	40% - 70%				
		Ventilation	less than 0.5 m/sec				
	Buildings with	Central air quality management system ventilation capacity and characteristics Effective ventilation capacity V ≥ 20Af/N(m³) Af: floor space (m²), N: floor space occupied by one person Characteristics: Generally satisfy the table below		Applicable buildings are buildings with requirements for ventilation equipment. See pages 115, 116 for details and			
	ventilation equipment 1) windowless rooms.	Impurity volume of floating particles	less than 0.15 mg per 1 m ³ of air	calculation methods.			
The Building	2) rooms in theaters,	CO rate	Less than 10 ppm.				
Standard Law of	 assembly halls, etc. 3) kitchens, bathrooms, etc. Rooms with equipment or devices using fire. 	CO ₂ rate	Less than 1,000 ppm.				
bapan		3) kitchens, bathrooms, etc.Rooms with equipment or devices using fire.	3) kitchens, bathrooms, etc. Rooms with equipment or devices using fire.	 kitchens, bathrooms, etc. Rooms with equipment or devices using fire. 	Temperature	 Between 17°C and 28°C When making the room temperature cooler than the outside temperature, do not make the difference too great. 	
		Relative humidity	40% - 70%				
		Ventilation	less than 0.5 m/sec				
		For general ventilation opening is at least 1/ ventilation equipmen 50 ppm and CO ₂ der central air quality ma ventilation equipmen standard target value	n, the effective ventilation area 20 of the floor space and the t installed gives a CO density of nsity of 5,000 ppm or less. If a nagement system or mechanical t is installed, comply with the es shown in the table below.	See pages 123, 124 for details.			
Industrial Safety and Health Act	Offices where workers	Impurity volume of floating particles	Air (1 atmospheric pressure, 25°C) less than 0.15 mg per 1 m ³ of air				
	work. (Office sanitation regulated standards)	CO rate	Less than 10 ppm. (Less than 20 ppm when outside supply air has a CO rate of more than 10 ppm.)				
		CO ₂ rate	Less than 1,000 ppm.				
		Air flow in room	Air speed in room is less than 0.5 m/s, and air taken into the room does not blow directly on or reach specific workers.				
		Heat and humidity conditions	Heat between 17°C - 28°C Relative humidity 40% - 70%				

1.2 The Building Standard Law of Japan (Building Standards Legal Enforcement Ordinance)

Legal article 28, clause 2 Regulation 20, clause 2,3,4 Regulation 129, clause 2,3 Notice from Ministry of Contruction No. 1826, 1970

1.2.1 Types of ventilation equipment that should be installed for special buildings.

Types of ventilation equipment that should be installed for special buildings.

	Special buildings where installation is required	Types of ventilation equipment
(1)	Windowless rooms (Effective windows for ventilation have an opening with an area of at least 1/20 of the floor space)	Natural ventilation equipment (Caution 1) Mechanical ventilation equipment (Caution 2) Central air quality management ventilation system (Caution 3)
(2)	Rooms in theaters, movie theaters, viewing halls, public halls, assembly halls	Mechanical ventilation equipment Central air quality management ventilation system
(3)	Kitchens, bathrooms, and other places where stoves, heaters, or other devices or equipment using fire are used.	Natural ventilation equipment Mechanical ventilation equipment

Note: 1. The area effective for ventilation is the area that is actually open. This area is about 1/2 the area of a sliding window, or almost the entire area of a rotating window.

- 2. For calculation (1) above, any rooms separated by sliding paper doors, etc., are counted as 1 room whenever they are opened.
- 3. For (3): 1) Rooms where only airtight combustion devices that do not give off polluting waste gases, and devices of the type that draw air directly from the outside for combustion installed in the rooms.
 - 2) As an exception, for kitchens with a total floor space of less than 100 m² in a residence, where the total heat capacity of the combustion devices is less than 41,860.5 kJ, the effective opening area must be at least 1/10 of the floor space, or at least 0.8 m².

≜ Caution

- 1. This does not refer to what is generally called natural ventilation; rather a ventilation device that depends on a draft developed by wind speed, density difference (natural strength) from an always opened supply air opening, exhaust air opening, or exhaust pipe.
- 2. Ventilation supplied by equipment under mechanical power (often a supply fan, exhaust fan) means one of the following combinations:
 - Supply fan + exhaust fan (Type 1 ventilation equipment)

Supply fan + exhaust opening (Type 2 ventilation equipment)

Exhaust fan + supply opening (Type 3 ventilation equipment).

The name in the brackets depends on district regulations, etc.

Air conditioners that bring in fresh air are classified as air supply fans.

3. For a building with a height of more than 31 m, and that is required to install an emergency elevator, etc., the air control device's control operation conditions must be able to be monitored from the central management room. (This is the same for buildings under 31 m with mechanical ventilation devices). If the building is under 31 m, it does not necessarily need to be controlled from the central management room. Controlling from an air quality device room is sufficient.

1.2.2 About ventilation capabilities, etc.

For regular buildings, omitting central air quality management devices, there are no regulations regarding ventilation capabilities and such. (For regular buildings with central air management devices, the characteristics that the device should have are the same as for buildings designed for a special purpose). The capabilities and such demanded for buildings designed for special purposes are shown below.

(1) Natural ventilation device dimensions (omitted)

(2) Effective ventilation capacity of mechanical ventilation devices

When installed in windowless rooms

• Effective ventilation capacity of mechanical ventilation devices when installed in windowless rooms

 $V = \frac{20Af}{N}$ V : effective ventilation capacity (m³/h) $Af = S \cdot 20s (m²)$ S: Room floor space (m²)
s: effective ventilation area (m²)
N: Actual conditions applying to floor space occupied by one person (m²) $N \begin{cases} = \frac{S}{n} & (when \frac{S}{n} \leq 10) \\ = 10 & (when \frac{S}{n} > 10) \\ n: Occupancy of room \end{cases}$ * The capabilities of supply/exhaust devices must be considered with respect to

* The capabilities of supply/exhaust devices must be considered with respect to overall pressure loss in the ventilation path.

When installed in rooms intended for use by assemblies

· Effective ventilation capacity of mechanical ventilation devices when installed in rooms intended for use by assemblies

 $V = \frac{20Af}{N}$ V: effective ventilation capacity (m³/h) Af = S (m²)S: Room floor space (m²) N: Actual conditions applying to floor space occupied by one person (m²) $N \begin{cases} = \frac{S}{n} \quad (\text{when } \frac{S}{n} \leq 3) \\ = 3 \quad (\text{when } \frac{S}{n} > 3) \\ n: \text{ Occupancy of room} \end{cases}$

When installed in rooms where combustion devices are used

• Effective ventilation capacity of mechanical ventilation devices when installed in rooms where combustion devices are used

V ≧ 40 kQ

- V : effective ventilation capacity (m³/h)
- k : unit of volume of theoretical waste gas per combustion volume (See "Theoretical waste gas volume" on the next page.)
- Q : Volume of fuel consumed in actual conditions

≜ Caution

Simple ventilation or simple air exchange does not mean supplying fresh air (O: 21%, N: 79%) to a room with no environmental hindrances. Therefore, when effective ventilation is converted into regular mechanical ventilation capacity, it becomes at least 40 m³/person·h, so caution is necessary.

	Fuel type		The such as the state of the second	The such a such as a such	
Name of fuel		Heat produced (kJ / m³)	volume per unit (m ³ /kJ)	volume (m ³ /m ³)	
	13A	46,000	0.000258	11.87	
	12A	40,000	0.000258	10.32	
City Coo	5C	19,000	0.000258	4.90	
City Gas	L1	21,000	0.000258	5.42	
	L2	21,000	0.000258	5.42	
	L3	15,000	0.000258	3.87	

Theoretical waste gas volume

Fue		
Name of fuel	Heat capacity	i neoretical waste gas volume
LP gas (mainly propane)	50,000 kJ/kg	12.90 m ³ /kg
Butane/Air gas	29,000 kJ/ m ³	7.33 m ³ /m ³
Kerosene	40,000 kJ/kg	12.10 m ³ /kg

(3) Ventilation capacity and characteristics of central air quality management devices

Effective ventilation capacity $V \ge 20 A f/N (m^3)$

However, As = S (room's total floor space) (m²) N: Floor space occupied by one person in actual condition (equals 10 when actual value is over 10).

Characteristics: Generally satisfy the table below.

Central air quality management system	ventilation capacity and characteristics
---------------------------------------	--

Impurity volume of floating particles	less than 0.15 mg per 1 m ³ of air		
CO rate	Less than 10 ppm.		
CO ₂ rate	Less than 1,000 ppm.		
	1) Between 17°C and 28°C		
Temperature	2) When making the room temperature cooler than the outside temperature, do not make the difference too great.		
Relative humidity	40% - 70%		
Ventilation	less than 0.5 m/sec		

▲ Caution

- 1. When cooling, keep the temperature difference at 7°C or less.
- 2. This table applies to regular buildings (under 31 m) when central air quality management system is installed.

Note: The volume of CO₂ given off by humans is about: 0.01 m³/hr

0.02 to 0.05 m³/hr

when sleeping during regular work 0.08 m³/hr during heavy exercise.

The formula generally used to calculate the necessary ventilation capacity to keep CO₂ density levels under accepted limits is given below.

$$y = \frac{k}{p-q} \times 100$$

y : required ventilation (m³/h) per 1 person

- k : CO2 given off by one person each hour
- p : acceptable level of CO2 in the room (%)
- q : density of CO2 in fresh air (usually about 0.03% to 0.04%)

The N value showing floor space occupied by one person is calculated by a general rule, and can not be uniformly regulated. However, the numerical values provided by JIS A3302 (Sewage purification tank management disposal by number of people calculation table, separated by the intended use of the building) allow some references to be drawn. This N value is created from the above-mentioned JIS A3302, which was completed for Tokyo, but this table can be treated as a reference for the entire country.

Ventilation device N value (floor space occupied by one person in actual conditions) (Building administrative use criteria)

	Building use	People calculated per unit	Space occupied by one person (m ²)	
1	Public hall, Assembly hall		0.5 m ² - 1.0 m ²	
2	Theater, Movie theater, Stage	Number of people that	0.5 m ² - 1.0 m ²	
3	Gymnasium	can be held at one time	0.5 m ² - 1.0 m ²	
4	Inn, Motel, Hotel		10 m ²	
5	Day-laborers' lodgings, Dormitory		3 m ²	
6	Youth hotel, Youth home	Number of people that can be held at one time	_	
7	Hospital, Sanitarium, Hospital for infectious diseases		4 m² - 5 m²	
8	Clinic, Doctor's office		5 m ²	Room floor space
9	Shop, Market		3 m ²	Floor space of the sales area
10	Market, Pawn shop		3 m ²	Room floor space
11	Department store		2 m ²	
12	Food/drink shop, Restaurant, Coffee shop		3 m ²	
13	Cabaret, Beer hall, Bar		2 m ²	Floor space of the
14	Billiard room, Table tennis hall, Dance hall, Bowling alley		2 m ²	sales area
15	Pachinko parlor, Go parlor, Mah johng parlor		2 m ²	
16	Day care center, Nursery school, Elementary school			
17	Junior High school, High school, University, all types of schools	can be held at one time		
18	Library		3 m ²	
19	Office		5 m²	Floor space of the work area
20	Factory, Office, Systems Management room	Number of staff members		
21	Laboratory, Testing Laboratory	Number of people that can be held at one time	_	
22	Public bathhouse		4 to 5 m ²	Floor space of the bathing area
23	Corridor		10 m ²	
24	Hall		3 to 5 m ²	
25	Restroom		30m ³ /h⋅1 m ²	
26	Washroom		10 m ³ /h·1 m ²	(Ventilation canacity)
27	Electrical storage room, etc.		35m ³ /h⋅1 m ²	
28	Automobile garage		35m³ /h⋅1 m²	

1.2.3 When accommodated people are present

Joint ventilation method *1 Pressure ventilation method *2

35 m³ /h·person

However, when adjusting h-person and humidity (note: during air adjustment), you can figure 1/2 of this value. (Note: In other words, the value 35 m³ /h-person expresses value when performing maintenance on the room environment, depending to a certain degree on the outside air taken in.)

▲ Caution

- *1 Method for supply air fan + exhaust air fan combination
- *2 Method for supply air fan only

Suction ventilation method (Exhaust air fan only method)

- 3. (I) When supplying outside air directly to the room $\ldots \ldots \ldots 35~m^3$ /h·person

1.2.4 When accommodated people are not present

		Ventilation method		od	
No.	Room	1 and 2. outside air volume (m ³ /h, m ²)	3. (I) exhaust air volume (m ³ /h, m ²)	3. (II) exhaust air volume (m ³ /h, m ²)	Notes
1	Private room	8	8	10	Night-duty room, bed room, living room, private business room, etc., with floor space smaller than that of public rooms
2	Office	10	10	12	Sales room, office
3	Personnel/Staff room	12	12	15	Utility room, Guard room, Telephone room, Reception, Break room
4	Display room	12	12	15	Exhibit room
5	Cosmetics room	12	12	15	Hair-cutting room
6	Sales floor	15	15	20	Department store sales floor, inside sales room
7	Work room	15	15	20	Craft room without much dust, printing room, delivery room, packing room, unpacking room
8	Break room	15	15	20	Lounge, Waiting room, Visitors room, Anteroom
9	Recreation room	15	15	20	Game room, Ballroom
10	Smoking room	20	20	25	Room used at the same time for smoking at a new industry
11	Small meeting room	25	25	30	Small conference room
12	Cafeteria (for sales)	25	25	30	General cafeteria, coffee shop, drinking place
13	Cafeteria (not for sales)	20	20	25	Place supplied for specific people
14	Kitchen	60	60	75	Includes cafeteria for sales
15	Kitchen	35	35	45	Does not include cafeteria for sales
16	Pantry	25	25	30	Includes cafeteria for sales
17	Pantry	15	15	20	Does not include cafeteria for sales
18	Boiler room		15	15	
19	Dressing room		10	10	Changing room, Dressing room
20	Check room	—	10	10	Coat room, Room where the check person is
21	Bathroom	—	30	30	For use of many people at once
22	Bathroom	—	20	20	For a private home
23	Restroom	—	30	30	With many toilets
24	Restroom	_	20	20	For a private home
25	Washroom	—	10	10	Wash room
26	Projection booth		20	20	
27	Dusty or smelly room		30	30	
28	Room where poisonous or flammable gas is emitted or could be emitted	—	35	35	Storage batter room, Auto garage
29	Dark room	_	20	20	Dark room for developing pictures
30	Room with mechanical or electrical devices (At least 15 m ²)	_	10	10	Machine room, Electric supply room

1.2.5 Standards when the ventilation equipment goes through the fire prevention section

Ministry of Construction Noice No. 1579 (28 December, 1974)

Building Standards Legal Enforcement Ordinance No. 12, Section 16

In a notice from the Ministry of Construction regarding laws related to the ventilation in medium and high rise apartment buildings, generally if the air path of the ventilation, etc., goes through the fire prevention section of a fireproof structure, a fireproofing damper device must be installed. However, in the cases of the following classifications, it is not necessary to install a fireproofing damper.

(1) When a kitchen, sun terrace, etc., ventilation device's duct goes through a secure hole in the section

Conditions

- The duct is steel plated and the plate thickness is at least 0.8 mm.
- There is a 2 m rising section in the central duct, or there is a smoke backflow prevention damper installed.
- The part of the duct actually going through is less than 250 cm².
- The main structure is securely fixed when installed.
- The gap around the piercing section of the duct is sealed with mortar, etc.
- The top of the central duct is open to the outside air, or ventilation fan is installed.
- The central duct and piping ducts are not used for purposes other than ventilation.

With a 2 m rising duct

With a smoke backflow prevention damper installed

(2) When the outer wall of the fireproof structure is pierced

Conditions

- The duct is steel plated and the plate thickness is at least 0.8 mm.
- The main structure is securely fixed when installed.
- The gap around the piercing section of the duct is sealed with mortar, etc.
- The part of the duct actually going through is less than 250 cm².
- The opening to the outside air has a shutter attached to the 0.8 mm or more thickness steel plating that can be shut at any time.

(3) When there is danger of fire spreading in the fire prevention area

By law, a fire prevention structure must be constructed if there is a danger of fire spreading from the opening section in the outer wall (Article 2, clause 6).

Sections with a danger of fire spreading

 When there are two or more buildings on the same premises from the lot boundary line and from the center line of the street, the area less than 3 m from the center line of the outer wall of the first floor, and less than 5 m from the center line of the outer wall of the second floor are sections with a danger of fire spreading.

 When there are two or more buildings on the same premises and the total extended area is less than 500 m²,

consider them as one building and measure from the

center of the space between the outer walls. In the

illustration below, A and B have a total area of less than

500 m², so they are considered one building.

Lot boundary line A Lot boundary line A Lot boundary line A Lot boundary line A Lot boundary line Center line of the street

* In the case above, if it faces a park, plaza, river or other open space, water surface, or fireproof structure, it is not considered and area with a danger of fire spreading.

1.3 Law for Maintenance of Sanitation in Buildings (Laws regarding the protection of a sanitary environment in buildings)

If the total extended area designated in a building for specific use (See Caution 1) is more than 3,000 m² (according to Article 1 of the regulations in the School and Education Laws, this area designated for specific use for schools is 8,000 m², see Caution 2), the measures necessary to maintain good environmental and sanitary conditions, including areas other than air quality environment such as supply/waste water processing, cleaning, and prevention of mice and insects, are regulated by the regulations applied to such buildings.

▲ Caution

Caution 1. Buildings designated for a specific use include

- 1. New industry, department store, assembly hall, library, natural history museum, art museum, or amusement center
- 2. Shop or office
- 3. Schools other than those designated by Article 1 of the regulations in the School and Education Law (including laboratories).
 - As explained above, buildings classified under Article 1 of the regulations in the School and Education Law are considered buildings for specific purposes.
- 4. Inns

"Cooperative housing" is another example shown in these regulations, but when the cooperative housing is not sharing an air control system, the management of the air environment should be left to the individual resident, and is therefore not included as an object of this law.

Caution 2. Article 1 of the regulations in the School and Education Law. According to this law, school refers to elementary schools, junior high schools, high schools, universities, technical schools, schools for the blind, schools for the deaf, schools for the handicapped, and nursery schools.

With the many controls previously noted, only when a central air quality management device (purification, temperature and humidity control, air flow adjustment) or a mechanical ventilation device (purification, air flow adjustment), only most of the target values shown below need to be met with respect to the maintenance of air environment quality.

Impurity volume of floating particles	less than 0.15 mg per 1 m ³ of air
CO rate	Less than 10 ppm. (Less than 20 ppm when outside supply air has a CO rate of more than 10 ppm.)
CO ₂ rate	Less than 1,000 ppm.
Temperature	 Between 17°C - 28°C When making the room temperature cooler than the outside temperature, do not make the difference too great.
Relative humidity	40% - 70%
Ventilation	less than 0.5 m/s

Please also note that for general buildings that are not classified as buildings designed for a specific purpose, when that building is used or utilized by a large number of people, the building should be maintained in compliance with the standards shown above.

1.4 Industrial Safety and Health Act

These laws include many categories that in the past were covered independently in relation to labor safety and sanitation. The included items that should be complied with, in addition to those related to air adjustment such as waste air figured per one laborer, ventilation, dust removal, air flow, and heat and humidity control, are boiler construction, manufacture, use, operator certification, certification of workers carrying out the construction of the air adjustment device, or the safety of working on scaffolding or other high places. However, because here we are dealing only with those items with a deep relation to air adjustment planning, there is a demand for another chance for research.

1.4.1 Office Sanitation Standard Regulations

The following points about ventilation, etc., of the office (see Caution 2) where workers (see Caution 1) work are established. (Indoor work other than in offices is according to the Labor Safety and Sanitation Regulations).

≜ Caution

- Caution 1. Workers as defined by the labor laws does not refer to types of occupations, but people who work in offices or indoor workplaces, (including public officials), and are paid wages. However, this does not apply in cases where only relatives are using the office or working out of the home.
- Caution 2. In this office, other than general office work (including related writing or filing), working in a room for a card line hand held typewriter or other mechanical work equipment is included. However, factories, or work places with one area free-standing or separated work area are not classified as offices or work places under this regulation. (Places where people work that are not covered by this law are subject to the Labor Safety and Sanitation Law).

Regular ventilation

There must be an opening directly to the outside air (See Caution 1), and it must have an opening section of at least 1/20 of the total floor space, otherwise a ventilation device is required (See Caution 2). Furthermore, the density of carbon monoxide (CO) in the room must be under 50 ppm, and the density of carbon dioxide (CO₂) must be under 5,000 ppm.

▲ Caution

Caution 1. Openings facing corridors, lobbies, etc., are not included.

Caution 2. Natural ventilation devices, as stated in "Ventilation," Item 9, section 2-1 of the Buildings Standards Law, includes air quality adjustment devices (as long as they are capable of drawing in fresh air) as well as mechanical ventilation devices.

The formula generally used to calculate the necessary ventilation capacity to keep CO₂ density levels under accepted limits is given below.

$$y = \frac{k}{p-q} \times 100$$

- y : required ventilation (m³/h) per 1 person
- k : CO2 given off by one person each hour (usually 0.02 m^3 to 0.05 $m^3)$
- p : acceptable level of CO2 in the room (%)
- q : density of CO2 in fresh air (%) (usually about 0.03% to 0.04%)

This formula only deals with carbon dioxide exhaled by people. When gas using devices or other combustion devices are being used in the room, it is necessary to check the amount of carbon dioxide given off by the device and add, and check the amount of air needed by the device and add.

Standards when a central air quality management system (See Caution 1)

In the Office Sanitation Standard Regulations, which differ from the Building Standards Law, whether or not a central air quality management system or other such system must be installed is not stated (in other words, it is dealt with in other laws), but if a central air quality management system or other such system is installed, adjust the device so that the air supplied to the room (See Caution 2) complies with the standards shown below.

Impurity volume of floating particles	Air (1 atmospheric pressure, 25°C) less than 0.15 mg per 1 m ³ of air
CO rate	Less than 10 ppm. (Less than 20 ppm when outside supply air has a CO rate of more than 10ppm.)
CO ₂ rate	Less than 1,000 ppm.
Air flow in room	Air speed in room is less than 0.5 m/s, and air taken into the room does not blow directly on or reach specific workers.
Heat and humidity conditions	Heat between 17°C - 28°C Relative humidity 40% to 70%

▲ Caution

- Caution 1. Air quality management systems (devices that can purify air, adjust temperature, humidity, and air flow for the supply air) and mechanical ventilation devices (devices that can purify air and adjust air flow for the supply air) are defined as devices that can control the supply air to all rooms uniformly from a centralized location.
- Caution 2. Air expelled from the exhaust air opening is not room air. This classification range includes air that is actually expelled from the exhaust opening, or air that is in the exhaust opening or the duct leading to the exhaust opening.

1.4.2 Industrial Safety and Health Regulations

The following regulations apply to the ventilation of indoor work spaces other than offices.

Ventilation

There must be an opening directly to the outside air, and it must have an opening section of at least 1/20 of the total floor space. However, if a ventilation device with enough capacity is installed, this is not necessary.

Speed of the air flow

When the temperature of the indoor work space is under 10°C, workers must not be exposed to an air flow faster than 1 m/s during ventilation.

Other

For indoor work spaces that contain devices which give off gas, steam, dust particles, or a lot of heat; closure of the source, installation of a localized exhaust device or an overall ventilation device, or some other such measure is necessary.

2. U.S.

ASHRAE standard 62 - 1999

Application	Outdoor air recommendation	Occupancy
Dry Cleaner	30 cfm/person	30 people/100 m ²
Dining room	20 cfm/person	70 people/100 m ²
Bars	30 cfm/person	100 people/100 m ²
Kitchens	15 cfm/person	20 people/100 m ²
Hotel bedroom	30 cfm/room	
Hotel living room	30 cfm/room	
Hotel lobby	15 cfm/person	30 people/100 m ²
Casino	30 cfm/person	120 people/100 m ²
Office space	20 cfm/person	7 people/100 m ²
Conference room	20 cfm/person	50 people/100 m ²
Smoking lounge	60 cfm/person	70 people/100 m ²
Bowling alley (seating area)	25 cfm/person	70 people/100 m ²

3. U.K.

CIBSE

	Outdoor air						
Application	Recommended	Recommended Minin		Smoking			
	Per person	Per person	Per m ²				
Factories	8 l/s /person	5 l/s /person	0.8 l/s / m ²	None			
Offices (open plan)	8 l/s /person	5 l/s /person	1.3 l/s / m ²	Some			
Shops, department stores and supermarkets	8 l/s /person	5 l/s /person	3.0 l/s / m ²	Some			
Theatres	8 l/s /person	5 l/s /person		Some			
Dance halls	12 l/s /person	8 l/s /person		Some			
Hotel bedrooms	12 l/s /person	8 l/s /person	1.7 l/s / m ²	Heavy			
Laboratories	12 l/s /person	8 l/s /person		Some			
Offices (private)	12 l/s /person	8 l/s /person	1.3 l/s / m ²	Heavy			
Residences (average)	12 l/s /person	8 l/s /person		Heavy			
Restaurant (cafeteria)	12 l/s /person	8 l/s /person		Heavy			
Cocktail bars	18 l/s /person	12 l/s /person	—	Heavy			
Conference rooms (average)	18 l/s /person	12 l/s /person	—	Some			
Residence	18 l/s /person	12 l/s /person	—	Heavy			
Restaurant	18 l/s /person	12 l/s /person	_	Heavy			
Board rooms executive offices and conference rooms	25 l/s /person	18 l/s /person	6.0 l/s / m²	Very Heavy			
Corridors	N/A	N/A	1.3 l/s / m ²	N/A			
Kitchens (domestic)	N/A	N/A	10.0 l/s / m ²	N/A			
Kitchens (restaurant)	N/A	N/A	20.0 l/s / m ²	N/A			
Toilets	N/A	N/A	10.0 l/s / m ²	N/A			

CHAPTER 11

Lossnay Q and A

	Question	Answer	Remarks
1	Paper is used for the material, but is the life adequate?	There is no problem with the life of the paper unless it is intentionally damaged, directly placed in water or in direct sunlight (ultra-violet rays). The life is longer than metal as it does not rust. It can be used for a minimum of ten years.	Depending on how it is stored, paper can be stored for up to 2,000 years without deteriorating, such as documents in temples and churches.
2	Is paper not an insulation material? (Poor conductor of heat)	Paper is very thin, and thus the conductivity of the material is low, with heat being transferred approximately the same as with metal. Test this by placing a piece of paper between your hands and you will feel the warmth of your palms. The recovery of humidity can also be felt by blowing on the paper and feeling the moisture in your breath transfer to your palm.	
3	If paper can recover humidity, will it not become wet?	Maybe you have seen the phenomenon during heating in winter where the window pane is wet but the paper blinds are dry. This is because the humidity is transferred through the paper membrane. The Lossnay is kept dry by employing this same principle.	
4	When is the forced simultaneous air intake/ exhaust-type more efficient?	When a building is sealed and normal ventilation is used, accurate exhaust is not possible unless a suction inlet is created. The Lossnay has both an air-supply fan and air-exhaust fan so Class 1 ventilation is possible.	
5	What are the energy conservation properties of the Lossnay?	For an example, in an approx. 13 m ² room with five people, a ventilation volume of 100 m ³ /h is required. The amount of power consumed in this case is approximately 45 W, and the amount of heat recovered during cooling is approximately 600 kcal/h or more. The coefficient of performance (C.O.P.) obtained when converted with the unit power generation amount is 16. In consideration that the popular heat pump-type has a C.O.P. of 2 to 3, the Lossnay is a high energy conserving machine. If a general-purpose ventilator is installed, the cooled air will be lost, thus increasing electrical costs throughout the year.	

	Question				Answer				Remarks
6	What are the economical factors? (This is for Japan)	Between 55 to 60% of the heat energy that escapes with ventilation is recovered by the Lossnay, so the cooling/heating cost can be reduced by approximately 43,000 yen per year. The initial costs can be suppressed down to a 59,000 yen increase when comparing the air conditioner, Lossnay, and ventilator (fixed- price base). Calculation conditions Cooling: Room temperature/humidity 26°C, 50% Outdoor air temperature/humidity 32°C, 70% Heating: Room temperature/humidity 20°C, 50% Outdoor air temperature/humidity 0°C, 50% Outdoor air temperature/humidity 0°C, 50% Building: General office facing south on middle floor 100 m² Cooling load (room) 104 W/m² Heating load (room) 77.7 W/m² Ventilation volume: 500 m³/h Without Lossnay:Straight lock fan BFS-50SU 2 units With Lossnay:Lossnay LGH-50RX3						There are also "savings in maintenance cost", "ventilation functions", "soundproofing effects" as well as "comfort" and "safety" which are not visible.	
			Wit	hout Loss	snay	W	ith Lossn	ay	
			Room	Outdoors	Total	Room	Outdoors	Total	
		Cooling	10400	5560	15960	10400	2340	12740	
		Heating	7770	5630	13400	7770	2140	9910	
	Air conditioner: Without Lossnay : Ceiling-suspended cassette-type air conditioner PLZ-J140KA9G91 unit With Lossnay : PLZ-J112KA9G91 unit Operation time: Cooling 10 hours/day, 26 days/month, 4 months/year, operation ratio 0.7 Heating 10 hours/day, 26 days/month, 5 months/year, operation ratio 0.7 Power costs (Tokyo Power special industrial power 6 kV supply) Summer 16.15 yen /kWh, Other 14.65/kWh								
7	If the air ventilated from the toilet is heat recovered, will the odors be transferred to other rooms?	For an examp odors genera air is still thre odors is 7% (0.7%. Thus, volume. How In the case of Note: (The but fo Lossr	e times the e times the hydrogen no proble ever, exh ammoni rotary-typ r ammon nay heat	otal ventila the toilet, one ventilation sulphide) em is seen aust is us a, the rate be has app ia, the tran recovery n	ation volu etc., is 30 ion amour , this will I in terms ually perfo is 2.8% t proximatel nsmission nethod.)	me is 100 , the total nt. Thus, i be: 100 × of total air prmed with using the s y the sam rate is 50	, and the a volume of f the leaka $30\% \times 1/3$ condition n a separa same form e transmis % or more	amount of conditioned ge rate of x < 7% = ed air te system. ula. ssion rate, e than the	<gas smoke<br="">transmission rate> CO : 1% CO2 : 2% H2S : 3% NH3 : 3% Smoke : 1% - 2% <conditions> (Supply and exhaust fans installed for suction feed. Standard treatment air volume.)</conditions></gas>

	Question	Answer	Remarks
8	Can the Lossnay be used for hospital air conditioning?	 According to the results obtained from the test performed by the Tokyo University Hospital (Inspection Centre, Prof. Kihachiro Shimizu), as the supply air and exhaust air pass through different passages, transmission of bacteria from exhaust side to supply side is low. They found: 1) Bacteria does not propagate in the Lossnay Core. 2) Even if bacteria accumulated in the Lossnay, it died off in approximately two weeks. 	
9	Since the entry to the Lossnay Core is fine and the incident air turbulent, won't it clog easily?	Normally, the original state of the filter can be regained by cleaning it more than once every one year, and the two intake side surfaces of the Lossnay Core more than once two years with a vacuum cleaner. Dust will not adhere in the passage due to the laminar flow if the air is normal.	Normal air refers to air that does not contain oil mist, etc. When exhausting air containing oil mist, etc., install a filter at return grille to remove the oil mist.
10	What is the air leakage rate?	This will differ on the position of the fans, but for both suction or both forced, the rate is 2% to 3%. Outdoor Indoor Exhaust fan Supply fan Outdoor Indoor EA Control of the fans, but for both suction or both supply fan Outdoor Indoor EA Control of the fans, but for both suction or both suction or both supply fan Outdoor Indoor EA Control of the fans, but for both suction or both suction or both supply fan Outdoor Indoor EA Control of the fans, but for both suction or both supply fan Outdoor Indoor EA Control of the fans, but fan Outdoor of the	
11	Can the Lossnay be used in extreme cold climates (-10°C or lower)?	If the winter room air temperature is above 20°C along with the humidity above 50%, and the outdoor temperature is -10°C or lower, moisture condensation or frosting will occur on the Lossnay Core. In this case, the intake air must be preheated. Plot the Lossnay intake side air conditions A and B on a psychrometric chart as shown below. If the high temperature side air B intersects the saturation curve such as at C, moisture condensation or frosting will occur on the Lossnay. In this case, the air should be preheated to the temperature indicated by point A' so that point C reaches the C' point.	

	Question			Answei	r		Remarks
12	Will tobacco nicotine and tar affect the Lossnay Core?	Tot thre the Ho lon sid	bacco smoke bugh the Los air filter. wever, in verg g period, the e. In this cas	Ample filtering will not be possible with a saran net air filter.			
13	What is the guideline for ventilation.	According to the The Building Standard Law of Japan, a ventilation volume of 20 m ³ /hr. person is required if the windows cannot be opened for ventilation. In buildings to which the Law for Maintenance of Sanitation in Buildings is appl the carbon gas concentration must be 0.1% or less, so a ventilation of 34 m ³ /h person is required. In Tokyo, the guideline is set at 25 to 30 m ³ /h.l The required ventilation volume per person is noted below.			ventilation ventilation. Buildings is applied lation of 34 m ³ /h. o 30 m ³ /h.l ow.	,	
	(These guidelines are for Japan)		Degree of				
			smoking	Application example	Recommended value	Minimum value	
			Extremely heavy	Broker's office Newspaper editing room Conference room	85	51	
			Quite Heavy	Bar Cabaret	51	42.5	
			Heavy	Office Restaurant	25.5 25.5	17 20	
			Light	Shop Department store	25.5	17	
			None				
14	Are there any places where the Lossnay cannot be used?	The suc The	e Lossnay ca ch as acids, a e Lossnay ca				
15	What are the soundproofing properties for music rooms and karaoke bars?	Wh me roc inta sou The app	When an LGH-50R ⁵⁺ was installed in a karaoke bar and the noise was measured, the following results were obtained. When the noise in the room was 96.5 dB (A), the noise level at a point 30 cm from the intake/exhaust grille on the outside wall was 67.5 dB (A). This shows a soundproofing effect of 29.0 dB (A). The soundproofing effect when the noise level is 100 dB (A) is approximately 30 dB (A).				

	Question	Answer	Remarks
		The Lossnay uses the forced simultaneous supply/exhaust method so the insufficient ventilation found in standard ventilators with no air intake is not found.	
		 Caution (1) The fresh air supplied to the room should not short circulate being drawn back into the return grille. It should flow through the entire room. 	
		(2) The relation of the supply and suction flows of the air conditioner must be also considered.	
16	What is the short circulation of the air intake/exhaust air outlet?	Air conditioner Air conditioner Air conditioner Air conditioner Air conditioner Air conditioner	
		 The air intake/exhaust grille on the outer wall is in the open and so there is a natural wind, with the result that short circulation will not occur easily. However, if the wind blows from the exhaust grille towards the intake grille, short circulation may occur, so these should be placed as far apart as possible. The guideline for the distance is three times the duct diameter. 	
		Duct diameter L	
		ø100 <u>300</u>	
		<u>ø150</u> 450 <u>ø200</u> 600	
		ø250 750	
17	Is total operation possible with switches?	Several units can be operated with the optional control switch.	
18	What is the difference between the rotary-type and static-type?	Refer to "Chapter 3 Performance comparisons with various heat recovery units and ventilators".	
19	Is an inspection hole necessary?	For the ceiling embedded-type, the unit is installed in the false ceiling, so an inspection hole is required at the Core and filter removal section and fan maintenance section. Refer to the catalog for details.	
20	What must be performed during maintenance?	Periodic inspection and cleaning of the Lossnay Core and air filter is necessary. Refer to "Chapter 9 Maintenance" for details.	

	Question				Answer			Remarks
		Clas air s All L The and/ < Cla	Class 1 ventilation refers to mechanical ventilation (forced simultaneous air supply/exhaust) using both intake and exhaust fans for suction feed. All Lossnay models (with built-in air-feed fans) are Class 1 ventilators. The ventilation method is classified in relation to the degree of natural and/or mechanical ventilation employed. <classification of="" ventilation=""></classification>					
	What are Close 1 vestilation			Intake	Exhaust	Ventilation volume	Room pressure	
21	facilities?		Class 1	Mechanical	Mechanical	Random (constant)	Random	
			Class 2	Mechanical	Natural	Random (constant)	Positive pressure	
			Class 3	Natural	Mechanical	Random (constant)	Negative pressure	
			Class 4	Natural	Assisted natural	Limited (inconstant)	Negative pressure	
22	Can the high efficiency filter (PZ-FM)* be installed on the supply air side?	Plea (Rea ● If i be	se install the ison) installed on efore passing oisture preve					
23	What are the anti-vibration measures for the Lossnay?	Mea (Use	<i>I</i> leasures are not required as a principle. Use BFS-30 to 100BK when an anti-vibration fitting is required.)					
24	Can the LGH and R types be installed vertically?	Verti 11 fc	ertical installation is possible in some cases. Refer to Chapter 5 Section for details.					

* Please consult with nearest Lossnay supplier about availability of these parts.

MEMO

